Expertise finding

Last updated

Expertise finding is the use of tools for finding and assessing individual expertise. In the recruitment industry, expertise finding is the problem of searching for employable candidates with certain required skills set. In other words, it is the challenge of linking humans to expertise areas, and as such is a sub-problem of expertise retrieval (the other problem being expertise profiling). [1]

Contents

Importance of expertise

It can be argued that human expertise [2] is more valuable than capital, means of production or intellectual property.[ citation needed ] Contrary to expertise, all other aspects of capitalism are now relatively generic: access to capital is global, as is access to means of production for many areas of manufacturing. Intellectual property can be similarly licensed. Furthermore, expertise finding is also a key aspect of institutional memory, as without its experts an institution is effectively decapitated. However, finding and "licensing" expertise, the key to the effective use of these resources, remain much harder, starting with the very first step: finding expertise that you can trust.

Until very recently, finding expertise required a mix of individual, social and collaborative practices, a haphazard process at best. Mostly, it involved contacting individuals one trusts and asking them for referrals, while hoping that one's judgment about those individuals is justified and that their answers are thoughtful.

In the last fifteen years, a class of knowledge management software has emerged to facilitate and improve the quality of expertise finding, termed "expertise locating systems". These software range from social networking systems to knowledge bases. Some software, like those in the social networking realm, rely on users to connect each other, thus using social filtering to act as "recommender systems".

At the other end of the spectrum are specialized knowledge bases that rely on experts to populate a specialized type of database with their self-determined areas of expertise and contributions, and do not rely on user recommendations. Hybrids that feature expert-populated content in conjunction with user recommendations also exist, and are arguably more valuable for doing so.

Still other expertise knowledge bases rely strictly on external manifestations of expertise, herein termed "gated objects", e.g., citation impacts for scientific papers or data mining approaches wherein many of the work products of an expert are collated. Such systems are more likely to be free of user-introduced biases (e.g., ResearchScorecard ), though the use of computational methods can introduce other biases.

There are also hybrid approaches which use user-generated data (e.g., member profiles), community-based signals (e.g., recommendations and skill endorsements), and personalized signals (e.g., social connection between searcher and results).

Examples of the systems outlined above are listed in Table 1.

Table 1: A classification of expertise location systems

TypeApplication domainData sourceExamples
Social networkingProfessional networkingUser-generated and community-generated
Scientific literature Identifying publications with strongest research impactThird-party generated
Scientific literature Expertise searchSoftware
Knowledge basePrivate expertise databaseUser-Generated
  • MITRE Expert Finder (MITRE Corporation)
  • MIT ExpertFinder (ref. 3)
  • Decisiv Search Matters & Expertise (Recommind, Inc.)
  • ProFinda (ProFinda Ltd)
  • Skillhive (Intunex)
  • Tacit Software (Oracle Corporation)
  • GuruScan (GuruScan Social Expert Guide)
Knowledge basePublicly accessible expertise databaseUser-generated
Knowledge basePrivate expertise databaseThird party-generated
  • MITRE Expert Finder (MITRE Corporation)
  • MIT ExpertFinder (ref. 3)
  • MindServer Expertise (Recommind, Inc.)
  • Tacit Software
Knowledge basePublicly accessible expertise databaseThird party-generated
  • ResearchScorecard (ResearchScorecard Inc.)
  • authoratory.com
  • BiomedExperts (Collexis Holdings Inc.)
  • KnowledgeMesh (Hershey Center for Applied Research)
  • Community Academic Profiles (Stanford School of Medicine)
  • ResearchCrossroads.org (Innolyst, Inc.)
Blog search engines Third party-generated

Technical problems

A number of interesting problems follow from the use of expertise finding systems:

Expertise ranking

Means of classifying and ranking expertise (and therefore experts) become essential if the number of experts returned by a query is greater than a handful. This raises the following social problems associated with such systems:

Sources of data for assessing expertise

Many types of data sources have been used to infer expertise. They can be broadly categorized based on whether they measure "raw" contributions provided by the expert, or whether some sort of filter is applied to these contributions.

Unfiltered data sources that have been used to assess expertise, in no particular ranking order:

Filtered data sources, that is, contributions that require approval by third parties (grant committees, referees, patent office, etc.) are particularly valuable for measuring expertise in a way that minimizes biases that follow from popularity or other social factors:

Approaches for creating expertise content

Collaborator discovery

In academia, a related problem is collaborator discovery, where the goal is to suggest suitable collaborators to a researcher. While expertise finding is an asynchronous problem (employer looking for employee), collaborator discovery can be distinguished from expertise finding by helping establishing more symmetric relationships (collaborations). Also, while in expertise finding the task often can be clearly characterized, this is not the case in academic research, where future goals are more fuzzy. [4]

Related Research Articles

Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.

Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP), which is concerned with building systems that automatically answer questions posed by humans in a natural language.

<span class="mw-page-title-main">Collaborative filtering</span> Algorithm

Collaborative filtering (CF) is a technique used by recommender systems. Collaborative filtering has two senses, a narrow one and a more general one.

A recommender system, or a recommendation system, is a subclass of information filtering system that provide suggestions for items that are most pertinent to a particular user. Typically, the suggestions refer to various decision-making processes, such as what product to purchase, what music to listen to, or what online news to read. Recommender systems are particularly useful when an individual needs to choose an item from a potentially overwhelming number of items that a service may offer.

Exploratory search is a specialization of information exploration which represents the activities carried out by searchers who are:

Query expansion (QE) is the process of reformulating a given query to improve retrieval performance in information retrieval operations, particularly in the context of query understanding. In the context of search engines, query expansion involves evaluating a user's input and expanding the search query to match additional documents. Query expansion involves techniques such as:

Cold start is a potential problem in computer-based information systems which involves a degree of automated data modelling. Specifically, it concerns the issue that the system cannot draw any inferences for users or items about which it has not yet gathered sufficient information.

Knowledge retrieval seeks to return information in a structured form, consistent with human cognitive processes as opposed to simple lists of data items. It draws on a range of fields including epistemology, cognitive psychology, cognitive neuroscience, logic and inference, machine learning and knowledge discovery, linguistics, and information technology.

<span class="mw-page-title-main">GroupLens Research</span> Computer science research lab

GroupLens Research is a human–computer interaction research lab in the Department of Computer Science and Engineering at the University of Minnesota, Twin Cities specializing in recommender systems and online communities. GroupLens also works with mobile and ubiquitous technologies, digital libraries, and local geographic information systems.

Collaborative search engines (CSE) are Web search engines and enterprise searches within company intranets that let users combine their efforts in information retrieval (IR) activities, share information resources collaboratively using knowledge tags, and allow experts to guide less experienced people through their searches. Collaboration partners do so by providing query terms, collective tagging, adding comments or opinions, rating search results, and links clicked of former (successful) IR activities to users having the same or a related information need.

Folksonomy is a classification system in which end users apply public tags to online items, typically to make those items easier for themselves or others to find later. Over time, this can give rise to a classification system based on those tags and how often they are applied or searched for, in contrast to a taxonomic classification designed by the owners of the content and specified when it is published. This practice is also known as collaborative tagging, social classification, social indexing, and social tagging. Folksonomy was originally "the result of personal free tagging of information [...] for one's own retrieval", but online sharing and interaction expanded it into collaborative forms. Social tagging is the application of tags in an open online environment where the tags of other users are available to others. Collaborative tagging is tagging performed by a group of users. This type of folksonomy is commonly used in cooperative and collaborative projects such as research, content repositories, and social bookmarking.

Collaborative tagging, also known as social tagging or folksonomy, allows users to apply public tags to online items, typically to make those items easier for themselves or others to find later. It has been argued that these tagging systems can provide navigational cues or "way-finders" for other users to explore information. The notion is that given that social tags are labels users create to represent topics extracted from online documents, the interpretation of these tags should allow other users to predict the contents of different documents efficiently. Social tags are arguably more important in exploratory search, in which the users may engage in iterative cycles of goal refinement and exploration of new information, and interpretation of information contents by others will provide useful cues for people to discover topics that are relevant.

<span class="mw-page-title-main">Learning to rank</span> Use of machine learning to rank items

Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment for each item. The goal of constructing the ranking model is to rank new, unseen lists in a similar way to rankings in the training data.

Personalcasting, or personalized digital television (PDTV), is an application that uses news-on-demand algorithms to deliver tailored broadcast news on a wide range of computing platforms including mobile phones and PDAs. Unlike podcasting, which is a series of digital media files that are typically downloaded through web syndication, personalcasting automatically indexes, clusters and extracts information from news sources.

AMiner is a free online service used to index, search, and mine big scientific data.

Personalized search refers to web search experiences that are tailored specifically to an individual's interests by incorporating information about the individual beyond the specific query provided. There are two general approaches to personalizing search results, involving modifying the user's query and re-ranking search results.

Social information seeking is a field of research that involves studying situations, motivations, and methods for people seeking and sharing information in participatory online social sites, such as Yahoo! Answers, Answerbag, WikiAnswers and Twitter as well as building systems for supporting such activities. Highly related topics involve traditional and virtual reference services, information retrieval, information extraction, and knowledge representation.

Social media mining is the process of obtaining big data from user-generated content on social media sites and mobile apps in order to extract actionable patterns, form conclusions about users, and act upon the information, often for the purpose of advertising to users or conducting research. The term is an analogy to the resource extraction process of mining for rare minerals. Resource extraction mining requires mining companies to shift through vast quantities of raw ore to find the precious minerals; likewise, social media mining requires human data analysts and automated software programs to shift through massive amounts of raw social media data in order to discern patterns and trends relating to social media usage, online behaviours, sharing of content, connections between individuals, online buying behaviour, and more. These patterns and trends are of interest to companies, governments and not-for-profit organizations, as these organizations can use these patterns and trends to design their strategies or introduce new programs, new products, processes or services.

Social navigation is a form of social computing introduced by Paul Dourish and Matthew Chalmers in 1994, who defined it as when "movement from one item to another is provoked as an artifact of the activity of another or a group of others". According to later research in 2002, "social navigation exploits the knowledge and experience of peer users of information resources" to guide users in the information space, and that it is becoming more difficult to navigate and search efficiently with all the digital information available from the World Wide Web and other sources. Studying others' navigational trails and understanding their behavior can help improve one's own search strategy by guiding them to make more informed decisions based on the actions of others.

Matrix factorization is a class of collaborative filtering algorithms used in recommender systems. Matrix factorization algorithms work by decomposing the user-item interaction matrix into the product of two lower dimensionality rectangular matrices. This family of methods became widely known during the Netflix prize challenge due to its effectiveness as reported by Simon Funk in his 2006 blog post, where he shared his findings with the research community. The prediction results can be improved by assigning different regularization weights to the latent factors based on items' popularity and users' activeness.

References

  1. Balog, Krisztian (2012). "Expertise Retrieval". Foundations and Trends in Information Retrieval. 6 (2–3): 127–256. doi:10.1561/1500000024.
  2. Njemanze, Ikenna (2016). "What Does Being a Strategic HR business Partner Look Like in Practice?". Archived from the original on June 21, 2018. Retrieved August 21, 2022.
  3. 1 2 3 Ha-Thuc, Viet; Venkataraman, Ganesh; Rodriguez, Mario; Sinha, Shakti; Sundaram, Senthil; Guo, Lin (2015). "Personalized expertise search at Linked In". 2015 IEEE International Conference on Big Data (Big Data). pp. 1238–1247. arXiv: 1602.04572 . doi:10.1109/BigData.2015.7363878. ISBN   978-1-4799-9926-2. S2CID   12751245.
  4. Schleyer, Titus; Butler, Brian S.; Song, Mei; Spallek, Heiko (2012). "Conceptualizing and advancing research networking systems". ACM Transactions on Computer-Human Interaction. 19 (1): 1–26. doi:10.1145/2147783.2147785. PMC   3872832 . PMID   24376309.

Further reading

  1. Ackerman, Mark and McDonald, David (1998) "Just Talk to Me: A Field Study of Expertise Location" Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work.
  2. Hughes, Gareth and Crowder, Richard (2003) "Experiences in designing highly adaptable expertise finder systems" Proceedings of the DETC Conference 2003.
  3. Maybury, M., D'Amore, R., House, D. (2002). "Awareness of organizational expertise." International Journal of Human-Computer Interaction14(2): 199-217.
  4. Maybury, M., D'Amore, R., House, D. (2000). Automating Expert Finding. International Journal of Technology Research Management. 43(6): 12-15.
  5. Maybury, M., D'Amore, R, and House, D. December (2001). Expert Finding for Collaborative Virtual Environments. Communications of the ACM 14(12): 55-56. In Ragusa, J. and Bochenek, G. (eds). Special Section on Collaboration Virtual Design Environments.
  6. Maybury, M., D'Amore, R. and House, D. (2002). Automated Discovery and Mapping of Expertise. In Ackerman, M., Cohen, A., Pipek, V. and Wulf, V. (eds.). Beyond Knowledge Management: Sharing Expertise. Cambridge: MIT Press.
  7. Mattox, D., M. Maybury, et al. (1999). "Enterprise expert and knowledge discovery". Proceedings of the 8th International Conference on Human-Computer Interactions (HCI International 99), Munich, Germany.
  8. Tang, J., Zhang J., Yao L., Li J., Zhang L. and Su Z.(2008) "ArnetMiner: extraction and mining of academic social networks" Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining.
  9. Viavacqua, A. (1999). "Agents for expertise location". Proceedings of the 1999 AAAI Spring Symposium on Intelligent Agents in Cyberspace, Stanford, CA.