F-crystal

Last updated

In algebraic geometry, F-crystals are objects introduced by Mazur (1972) that capture some of the structure of crystalline cohomology groups. The letter F stands for Frobenius, indicating that F-crystals have an action of Frobenius on them. F-isocrystals are crystals "up to isogeny".

Contents

F-crystals and F-isocrystals over perfect fields

Suppose that k is a perfect field, with ring of Witt vectors W and let K be the quotient field of W, with Frobenius automorphism σ.

Over the field k, an F-crystal is a free module M of finite rank over the ring W of Witt vectors of k, together with a σ-linear injective endomorphism of M. An F-isocrystal is defined in the same way, except that M is a module for the quotient field K of W rather than W.

Dieudonné–Manin classification theorem

The Dieudonné–Manin classification theorem was proved by Dieudonné (1955) and Manin (1963). It describes the structure of F-isocrystals over an algebraically closed field k. The category of such F-isocrystals is abelian and semisimple, so every F-isocrystal is a direct sum of simple F-isocrystals. The simple F-isocrystals are the modules Es/r where r and s are coprime integers with r>0. The F-isocrystal Es/r has a basis over K of the form v, Fv, F2v,...,Fr−1v for some element v, and Frv = psv. The rational number s/r is called the slope of the F-isocrystal.

Over a non-algebraically closed field k the simple F-isocrystals are harder to describe explicitly, but an F-isocrystal can still be written as a direct sum of subcrystals that are isoclinic, where an F-crystal is called isoclinic if over the algebraic closure of k it is a sum of F-isocrystals of the same slope.

The Newton polygon of an F-isocrystal

The Newton polygon of an F-isocrystal encodes the dimensions of the pieces of given slope. If the F-isocrystal is a sum of isoclinic pieces with slopes s1 < s2 < ... and dimensions (as Witt ring modules) d1, d2,... then the Newton polygon has vertices (0,0), (x1, y1), (x2, y2),... where the nth line segment joining the vertices has slope sn = (ynyn−1)/(xnxn−1) and projection onto the x-axis of length dn = xn  xn−1.

The Hodge polygon of an F-crystal

The Hodge polygon of an F-crystal M encodes the structure of M/FM considered as a module over the Witt ring. More precisely since the Witt ring is a principal ideal domain, the module M/FM can be written as a direct sum of indecomposable modules of lengths n1n2 ≤ ... and the Hodge polygon then has vertices (0,0), (1,n1), (2,n1+ n2), ...

While the Newton polygon of an F-crystal depends only on the corresponding isocrystal, it is possible for two F-crystals corresponding to the same F-isocrystal to have different Hodge polygons. The Hodge polygon has edges with integer slopes, while the Newton polygon has edges with rational slopes.

Isocrystals over more general schemes

Suppose that A is a complete discrete valuation ring of characteristic 0 with quotient field k of characteristic p>0 and perfect. An affine enlargement of a scheme X0 over k consists of a torsion-free A-algebra B and an ideal I of B such that B is complete in the I topology and the image of I is nilpotent in B/pB, together with a morphism from Spec(B/I) to X0. A convergent isocrystal over a k-scheme X0 consists of a module over BQ for every affine enlargement B that is compatible with maps between affine enlargements ( Faltings 1990 ).

An F-isocrystal (short for Frobenius isocrystal) is an isocrystal together with an isomorphism to its pullback under a Frobenius morphism.

Related Research Articles

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Affine space</span> Euclidean space without distance and angles

In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine algebraic set is the set of the common zeros over an algebraically closed field k of some family of polynomials in the polynomial ring An affine variety or affine algebraic variety, is an affine algebraic set such that the ideal generated by the defining polynomials is prime.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In algebra, a field k is perfect if any one of the following equivalent conditions holds:

<span class="mw-page-title-main">Group scheme</span>

In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, crystals are Cartesian sections of certain fibered categories. They were introduced by Alexander Grothendieck, who named them crystals because in some sense they are "rigid" and "grow". In particular quasicoherent crystals over the crystalline site are analogous to quasicoherent modules over a scheme.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

In mathematics, the Hasse–Witt matrixH of a non-singular algebraic curve C over a finite field F is the matrix of the Frobenius mapping (p-th power mapping where F has q elements, q a power of the prime number p) with respect to a basis for the differentials of the first kind. It is a g × g matrix where C has genus g. The rank of the Hasse–Witt matrix is the Hasse or Hasse–Witt invariant.

In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974).

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields with residual characteristic p. The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.

In mathematics, a Dieudonné module introduced by Jean Dieudonné, is a module over the non-commutative Dieudonné ring, which is generated over the ring of Witt vectors by two special endomorphisms and called the Frobenius and Verschiebung operators. They are used for studying finite flat commutative group schemes.

In the mathematical field of differential geometry, a Frobenius manifold, introduced by Dubrovin, is a flat Riemannian manifold with a certain compatible multiplicative structure on the tangent space. The concept generalizes the notion of Frobenius algebra to tangent bundles.

This is a glossary of algebraic geometry.

References