FAAH2

Last updated
FAAH2
Identifiers
Aliases FAAH2 , AMDD, fatty acid amide hydrolase 2
External IDs OMIM: 300654 HomoloGene: 45263 GeneCards: FAAH2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_174912
NM_001353840
NM_001353841

n/a

RefSeq (protein)

NP_777572
NP_001340769
NP_001340770

n/a

Location (UCSC) Chr X: 57.29 – 57.49 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Fatty acid amide hydrolase 2 or FAAH2 (EC 3.5.1.99, oleamide hydrolase 2, anandamide amidohydrolase 2) is a member of the serine hydrolase family of enzymes. [3]

Contents

Fatty acid amide hydrolase 2 degrades endocannabinoids and defects in this enzyme have been associated with neurologic and psychiatric disorders. [4]

See also

Related Research Articles

<span class="mw-page-title-main">CYP2E1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2E1 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. This class of enzymes is divided up into a number of subcategories, including CYP1, CYP2, and CYP3, which as a group are largely responsible for the breakdown of foreign compounds in mammals.

<span class="mw-page-title-main">URB597</span> Chemical compound

URB597 (KDS-4103) is a relatively selective and irreversible inhibitor of the enzyme fatty acid amide hydrolase (FAAH). FAAH is the primary degradatory enzyme for the endocannabinoid anandamide and, as such, inhibition of FAAH leads to an accumulation of anandamide in the CNS and periphery where it activates cannabinoid receptors. URB597 has been found to elevate anandamide levels and have activity against neuropathic pain in a mouse model.

<span class="mw-page-title-main">CYP1A1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450, family 1, subfamily A, polypeptide 1 is a protein that in humans is encoded by the CYP1A1 gene. The protein is a member of the cytochrome P450 superfamily of enzymes.

<span class="mw-page-title-main">Monoacylglycerol lipase</span> Class of enzymes

Monoacylglycerol lipase is an enzyme that, in humans, is encoded by the MGLL gene. MAGL is a 33-kDa, membrane-associated member of the serine hydrolase superfamily and contains the classical GXSXG consensus sequence common to most serine hydrolases. The catalytic triad has been identified as Ser122, His269, and Asp239.

<span class="mw-page-title-main">Fatty-acid amide hydrolase 1</span>

Fatty-acid amide hydrolase 1 or FAAH-1(EC 3.5.1.99, oleamide hydrolase, anandamide amidohydrolase) is a member of the serine hydrolase family of enzymes. It was first shown to break down anandamide (AEA), an N-acylethanolamine (NAE) in 1993. In humans, it is encoded by the gene FAAH. FAAH also regulate the contents of NAE's in Dictyostelium discoideum, as they modulate their NAE levels in vivo through the use of a semispecific FAAH inhibitor.

<span class="mw-page-title-main">Oleamide</span> Chemical compound

Oleamide is an organic compound with the formula CH3(CH2)7CH=CH(CH2)7CONH2. It is the amide derived from the fatty acid oleic acid. It is a colorless waxy solid and occurs in nature. Sometimes labeled as a fatty acid primary amide (FAPA), it is biosynthesized from N-oleoylglycine.

<span class="mw-page-title-main">Amidase</span>

In enzymology, an amidase (EC 3.5.1.4, acylamidase, acylase (misleading), amidohydrolase (ambiguous), deaminase (ambiguous), fatty acylamidase, N-acetylaminohydrolase (ambiguous)) is an enzyme that catalyzes the hydrolysis of an amide. In this way, the two substrates of this enzyme are an amide and H2O, whereas its two products are monocarboxylate and NH3.

<span class="mw-page-title-main">CYP4F8</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F8 is a protein that in humans is encoded by the CYP4F8 gene.

<span class="mw-page-title-main">CYP4F12</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F12 is a protein that in humans is encoded by the CYP4F12 gene.

<span class="mw-page-title-main">ACOT4</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 4 is an enzyme that in humans is encoded by the ACOT4 gene.

<span class="mw-page-title-main">ACOT11</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 11 also known as StAR-related lipid transfer protein 14 (STARD14) is an enzyme that in humans is encoded by the ACOT11 gene. This gene encodes a protein with acyl-CoA thioesterase activity towards medium (C12) and long-chain (C18) fatty acyl-CoA substrates which relies on its StAR-related lipid transfer domain. Expression of a similar murine protein in brown adipose tissue is induced by cold exposure and repressed by warmth. Expression of the mouse protein has been associated with obesity, with higher expression found in obesity-resistant mice compared with obesity-prone mice. Alternative splicing results in two transcript variants encoding different isoforms.

N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) is an enzyme that catalyzes the release of N-acylethanolamine (NAE) from N-acyl-phosphatidylethanolamine (NAPE). This is a major part of the process that converts ordinary lipids into chemical signals like anandamide and oleoylethanolamine. In humans, the NAPE-PLD protein is encoded by the NAPEPLD gene.

<span class="mw-page-title-main">Biochanin A</span> Chemical compound

Biochanin A is an O-methylated isoflavone. It is a natural organic compound in the class of phytochemicals known as flavonoids. Biochanin A can be found in red clover in soy, in alfalfa sprouts, in peanuts, in chickpea and in other legumes.

4-Nonylphenylboronic acid is a potent and selective inhibitor of the enzyme fatty acid amide hydrolase (FAAH), with an IC50 of 9.1nM, and 870x selectivity for FAAH over the related enzyme MAGL, which it inhibits with an IC50 of 7900nM. It is also a weaker inhibitor of the enzymes endothelial lipase and lipoprotein lipase, with IC50 values of 100 nM and 1400 nM respectively.

<span class="mw-page-title-main">ABHD6</span> Protein-coding gene in the species Homo sapiens

alpha/beta-Hydrolase domain containing 6 (ABHD6), also known as monoacylglycerol lipase ABHD6 or 2-arachidonoylglycerol hydrolase is an enzyme that in humans is encoded by the ABHD6 gene.

<span class="mw-page-title-main">Acyl-CoA thioesterase 9</span> Protein-coding gene in humans

Acyl-CoA thioesterase 9 is a protein that is encoded by the human ACOT9 gene. It is a member of the acyl-CoA thioesterase superfamily, which is a group of enzymes that hydrolyze Coenzyme A esters. There is no known function, however it has been shown to act as a long-chain thioesterase at low concentrations, and a short-chain thioesterase at high concentrations.

N-acylethanolamine acid amide hydrolase (NAAA) EC 3.5.1.- is a member of the choloylglycine hydrolase family, a subset of the N-terminal nucleophile hydrolase superfamily. NAAA has a molecular weight of 31 kDa. The activation and inhibition of its catalytic site is of medical interest as a potential treatment for obesity and chronic pain. While it was discovered within the last decade, its structural similarity to the more familiar acid ceramidase (AC) and functional similarity to fatty acid amide hydrolase (FAAH) allow it to be studied extensively.

<span class="mw-page-title-main">ACOT1</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 1 is a protein that in humans is encoded by the ACOT1 gene.

<span class="mw-page-title-main">ABHD12</span> Protein-coding gene in the species Homo sapiens

alpha/beta-Hydrolase domain containing 12 (ABHD12) is a serine hydrolase encoded by the ABHD12 gene that participates in the breakdown of the endocannabinoid neurotransmitter 2-arachidonylglycerol (2-AG) in the central nervous system. It is responsible for about 9% of brain 2-AG hydrolysis. Together, ABHD12 along with two other enzymes, monoacylglycerol lipase (MAGL) and ABHD6, control 99% of 2-AG hydrolysis in the brain. ABHD12 also serves as a lysophospholipase and metabolizes lysophosphatidylserine (LPS).

<span class="mw-page-title-main">Epoxide hydrolase 3</span> Protein-coding gene in the species Homo sapiens

Epoxide hydrolase 3 is a protein that in humans is encoded by the EPHX3 gene. It is the third defined isozyme in a set of epoxide hydrolase isozymes, the epoxide hydrolases. This set includes the Microsomal epoxide hydrolase ; the epoxide hydrolase 2 ; and the far less well defined enzymatically, epoxide hydrolase 4. All four enzyme contain an Alpha/beta hydrolase fold suggesting that they have Hydrolysis activity. EH1, EH2, and EH3 have been shown to have such activity in that they add water to epoxides of unsaturated fatty acids to form vicinal cis products; the activity of EH4 has not been reported. The former three EH's differ in subcellular location, tissue expression patterns, substrate preferences, and thereby functions. These functions include limiting the biologically actions of certain fatty acid epoxides, increasing the toxicity of other fatty acid epoxides, and contributing to the metabolism of drugs and other xenobiotics.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000165591 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF (December 2006). "A second fatty acid amide hydrolase with variable distribution among placental mammals". The Journal of Biological Chemistry. 281 (48): 36569–78. doi: 10.1074/jbc.M606646200 . PMID   17015445.
  4. Sirrs S, van Karnebeek CD, Peng X, Shyr C, Tarailo-Graovac M, Mandal R, et al. (March 2015). "Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms". Orphanet Journal of Rare Diseases. 10: 38. doi: 10.1186/s13023-015-0248-3 . PMC   4423390 . PMID   25885783.