FHI-aims

Last updated
FHI-aims
Developer(s) FHI-aims developers group
Stable release
231212 / 12 December 2023;5 months ago (2023-12-12)
Written in Fortran, MPI
Operating system Linux
Type Density Functional Theory (simulation)
License Academic / Commercial
Website fhi-aims.org

FHI-aims (Fritz Haber Institute ab initio materials simulations) is a software package for computational molecular and materials science written in Fortran. It uses density functional theory and many-body perturbation theory to simulate chemical and physical properties of atoms, molecules, nanostructures, solids, and surfaces. Originally developed at the Fritz Haber Institute in Berlin, the ongoing development of the FHI-aims source code is now driven by a worldwide community of collaborating research institutions. [1]

Contents

Overview

The FHI-aims software package is an all-electron, full-potential electronic structure code utilizing numeric atom-centered basis functions for its electronic structure calculations. The localized basis set enables the accurate treatment of all electrons on the same footing in periodic and non-periodic systems without relying on the approximation for the core states, such as pseudopotentials. Importantly, the basis sets enable high numerical accuracy on par with the best available all-electron reference methods while remaining scalable to system sizes up to several thousands of atoms. In order to achieve this for bulk solids, surfaces or other low-dimensional systems and molecules, the choice of basis functions is crucial. The workload of the simulations is efficiently distributable for parallel computing using the MPI communication protocol. The code is routinely used on platforms ranging from laptops to distributed-parallel supercomputers with ten thousand CPUs, and the scalability of the code has been tested up to 100,000's of CPUs. [2]

The primary production methods of FHI-aims are density functional theory as well as many-body methods and higher-level quantum chemistry approaches. [3] For the exchange-correlation treatment, local (LDA), semi-local (e.g., PBE, PBEsol), meta-GGA, and hybrid (e.g., HSE06, B3LYP) functionals have been implemented. The resulting orbitals can be used within the framework of many-body perturbation theory, such as Møller-Plesset perturbation theory or the GW approximation. Moreover, thermodynamic properties of the molecules and solids are accessible via Born-Oppenheimer molecular dynamics and path integral molecular dynamics methods. The first step is to expand the Kohn-Sham orbitals packages into a set of basis functions

Since FHI-aims is an all-electron full-potential code that is computationally efficient without compromising accuracy, the choice of basis function is crucial in order to achieve the said accuracy. Therefore, FHI-aims is based on numerically tabulated atom-centered orbitals (NAOs) of the form:

As the name implies, the radial shape is numerically tabulated and, therefore, fully flexible. This allows the creation of optimized element-dependent basis sets that are as compact as possible while retaining a high and transferable accuracy in production calculations up to meV-level total energy convergence. To obtain real-valued , here denotes the real parts () and imaginary parts () of complex spherical harmonics, with an implicit function of the radial function index . [4]


History

The first line of code of the actual FHI-aims code was written in late 2004, using the atomic solver employed in the Fritz Haber Institute pseudopotential program package fhi98PP as a foundation to obtain radial functions for use as basis functions. The first developments benefitted heavily from the excellent set of numerical technologies described in several publications by Bernard Delley [5] [6] and coworkers in the context of the DMol3 code, [7] as well as from many broader methodological developments published in the electronic structure theory community over the years. Initial efforts in FHI-aims focused on developing a complete numeric atom-centered basis set library for density-functional theory from "light" to highly accurate (few meV/atom) accuracy for total energies, available for the elements up to nobelium (Z=102) across the periodic table. [8]

By 2006, work on parallel functionality, support for periodic boundary conditions, total energy gradients (forces) and on exact exchange and many-body perturbation theory had commenced. On May 18, 2009, an initial formal point release of the code, "051809", was made available and laid the foundation for broadening the user and developer base of the code.

See also

Related Research Articles

<span class="mw-page-title-main">Computational chemistry</span> Branch of chemistry

Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion, achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena.

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry. In quantum mechanics, electron configurations of atoms are described as wavefunctions. In a mathematical sense, these wave functions are the basis set of functions, the basis functions, which describe the electrons of a given atom. In chemical reactions, orbital wavefunctions are modified, i.e. the electron cloud shape is changed, according to the type of atoms participating in the chemical bond.

In computational chemistry and molecular physics, Gaussian orbitals are functions used as atomic orbitals in the LCAO method for the representation of electron orbitals in molecules and numerous properties that depend on these.

Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in nuclear physics. Coupled cluster essentially takes the basic Hartree–Fock molecular orbital method and constructs multi-electron wavefunctions using the exponential cluster operator to account for electron correlation. Some of the most accurate calculations for small to medium-sized molecules use this method.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

<span class="mw-page-title-main">Stark effect</span> Spectral line splitting in electrical field

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear or quadratic with a high accuracy.

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate. It uses a linear combination of configuration state functions (CSF), or configuration determinants, to approximate the exact electronic wavefunction of an atom or molecule. In an MCSCF calculation, the set of coefficients of both the CSFs or determinants and the basis functions in the molecular orbitals are varied to obtain the total electronic wavefunction with the lowest possible energy. This method can be considered a combination between configuration interaction and Hartree–Fock.

<span class="mw-page-title-main">Pseudopotential</span>

In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced by Hans Hellmann in 1934.

In theoretical and computational chemistry, a basis set is a set of functions that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.

<span class="mw-page-title-main">SIESTA (computer program)</span>

SIESTA is an original method and its computer program implementation, to efficiently perform electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA uses strictly localized basis sets and the implementation of linear-scaling algorithms. Accuracy and speed can be set in a wide range, from quick exploratory calculations to highly accurate simulations matching the quality of other approaches, such as the plane-wave and all-electron methods.

Modern valence bond theory is the application of valence bond theory (VBT) with computer programs that are competitive in accuracy and economy with programs for the Hartree–Fock or post-Hartree-Fock methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were easier to program. The early popularity of valence bond methods thus declined. It is only recently that the programming of valence bond methods has improved. These developments are due to and described by Gerratt, Cooper, Karadakov and Raimondi (1997); Li and McWeeny (2002); Joop H. van Lenthe and co-workers (2002); Song, Mo, Zhang and Wu (2005); and Shaik and Hiberty (2004)

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

Car–Parrinello molecular dynamics or CPMD refers to either a method used in molecular dynamics or the computational chemistry software package used to implement this method.

Localized molecular orbitals are molecular orbitals which are concentrated in a limited spatial region of a molecule, such as a specific bond or lone pair on a specific atom. They can be used to relate molecular orbital calculations to simple bonding theories, and also to speed up post-Hartree–Fock electronic structure calculations by taking advantage of the local nature of electron correlation. Localized orbitals in systems with periodic boundary conditions are known as Wannier functions.

The Holstein–Herring method, also called the surface Integral method, or Smirnov's method is an effective means of getting the exchange energy splittings of asymptotically degenerate energy states in molecular systems. Although the exchange energy becomes elusive at large internuclear systems, it is of prominent importance in theories of molecular binding and magnetism. This splitting results from the symmetry under exchange of identical nuclei. The basic idea pioneered by Theodore Holstein, Conyers Herring and Boris M. Smirnov in the 1950-1960.

The projector augmented wave method (PAW) is a technique used in ab initio electronic structure calculations. It is a generalization of the pseudopotential and linear augmented-plane-wave methods, and allows for density functional theory calculations to be performed with greater computational efficiency.

The linearized augmented-plane-wave method (LAPW) is an implementation of Kohn-Sham density functional theory (DFT) adapted to periodic materials. It typically goes along with the treatment of both valence and core electrons on the same footing in the context of DFT and the treatment of the full potential and charge density without any shape approximation. This is often referred to as the all-electron full-potential linearized augmented-plane-wave method (FLAPW). It does not rely on the pseudopotential approximation and employs a systematically extendable basis set. These features make it one of the most precise implementations of DFT, applicable to all crystalline materials, regardless of their chemical composition. It can be used as a reference for evaluating other approaches.

References

  1. "The FHI-aims developers group".
  2. R. Johanni, A. Marek, H. Lederer, and V. Blum. "Scaling of Eigenvalue Solver Dominated Simulations, in: Juelich Blue Gene/P Extreme Scaling Workshop 2011" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. "FHI-aims home page".
  4. Blum, Volker; Gehrke, Ralf.; Hanke, Felix; et al. (2009). "Ab initio molecular simulations with numeric atom-centered orbitals". Comput. Phys. Commun. 180 (11): 2175–2196. Bibcode:2009CoPhC.180.2175B. doi: 10.1016/j.cpc.2009.06.022 .
  5. Delley, B. (1990). "An all‐electron numerical method for solving the local density functional for polyatomic molecules". J. Chem. Phys. 92 (1): 508. Bibcode:1990JChPh..92..508D. doi:10.1063/1.458452.
  6. Delley, B. (1996). "Fast Calculation of Electrostatics in Crystals and Large Molecules". J. Phys. Chem. 100 (15): 6107–6110. doi:10.1021/jp952713n.
  7. Delley, B. (2000). "From molecules to solids with the DMol3 approach" (PDF). J. Chem. Phys. 113 (18): 7756. Bibcode:2000JChPh.113.7756D. doi:10.1063/1.1316015.
  8. Blum, Volker; Gehrke, Ralf.; Hanke, Felix; et al. (2009). "Ab initio molecular simulations with numeric atom-centered orbitals". Comput. Phys. Commun. 180 (11): 2175–2196. Bibcode:2009CoPhC.180.2175B. doi: 10.1016/j.cpc.2009.06.022 .