FIR transfer function

Last updated

Transfer function filter utilizes the transfer function and the Convolution theorem to produce a filter. In this article, an example of such a filter using finite impulse response is discussed and an application of the filter into real world data is shown.

Contents

FIR (Finite Impulse Response) Linear filters

In digital signal processing, an FIR filter is a time-continuous filter that is invariant with time. This means that the filter does not depend on the specific point of time, but rather depends on the time duration. The specification of this filter uses a transfer function having a frequency response that will only pass the desired frequencies of the input. This type of filter is non-recursive, which means that the output can be completely derived from a combination of the input without any recursive values of the output. This means that there is no feedback loop that feeds the new output the values of previous outputs. This is an advantage over recursive filters such as IIR filter (Infinite Impulse Response) in applications that require a linear phase response because it will pass the input without phase distortion. [1]

Mathematical model

Let the output function be and the input is . The convolution of the input with a transfer function provides a filtered output. The mathematical model of this type of filter is:

h() is a transfer function of an impulse response to the input. The convolution allows the filter to only be activated when the input recorded a signal at the same time value. This filter returns the input values (x(t)) if k falls into the support region of function h. This is the reason why this filter is called finite response. If k is outside of the support region, the impulse response is zero which makes output zero. The central idea of this h() function can be thought of as a quotient of two functions. [2]

According to Huang (1981) [3] Using this mathematical model, there are four methods of designing non-recursive linear filters with various concurrent filter designs:

  1. Window design method
  2. Frequency Sampling method
  3. Conventional linear programming
  4. Iterative linear programming

Single-sided Linear Filter

Input function

Define the input signal:

adds a random number from 1 to 200 to the sinusoidal function which serves to distort the data.

Sin with random function.jpg

Single-sided filter

Use an exponential function as the impulse response for the support region of positive values.

The frequency response of this filter resembles a low-pass filter as in the lower frequency.

Single sided filter frequency response.jpg Single sided filter.jpg

Double-sided filter

Let the input signal to be the same as the single-sided function. Use an exponential function as the impulse response for the support region of positive values as before. In this double-sided filter, also implement another exponential function. The opposite in signs of the powers of the exponent is to maintain the non-infinite results when computing the exponential functions.

Examine this filter in its frequency domain, we see that the magnitude response is the same trend as the single sided filter. However, the frequencies that can be passed are smaller than those of the single-sided filter. This resulted in a smoother output. The significant of this consequence is that the double-sided filters types of linear filters are better being a filter.

Double sided filter frequency response.jpg Double sided filter.jpg

FIR Transfer function Linear filter Application

Linear filter performs better when it is a double-sided filter. This requires the data to be known in advance which makes it a challenge for these filters to function well in situations where signals cannot be known ahead of time such as radio signal processing. However, this means that linear filters are extremely useful in filtering pre-loaded data. In addition, because of its non-recursive nature which preserves the phase angles of the input, linear filters are usually used in image processing, video processing, data processing or pattern detection. Some examples are image enhancement, restoration and pre-whitening for spectral analysis. [4] Additionally, linear non-recursive filters are always stable and usually produce a purely real output which makes them more favorable. They are also computationally easy which usually creates a big advantage for using this FIR linear filter.

Related Research Articles

<span class="mw-page-title-main">Convolution</span> Integral expressing the amount of overlap of one function as it is shifted over another

In mathematics, convolution is a mathematical operation on two functions that produces a third function. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result. Graphically, it expresses how the 'shape' of one function is modified by the other.

Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant in which case they can be analyzed exactly using LTI system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain. Real-time implementations of such linear signal processing filters in the time domain are inevitably causal, an additional constraint on their transfer functions. An analog electronic circuit consisting only of linear components will necessarily fall in this category, as will comparable mechanical systems or digital signal processing systems containing only linear elements. Since linear time-invariant filters can be completely characterized by their response to sinusoids of different frequencies, they are sometimes known as frequency filters.

<span class="mw-page-title-main">Digital filter</span> Device for suppressing part of a discretely-sampled signal

In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals.

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.

Filter design is the process of designing a signal processing filter that satisfies a set of requirements, some of which may be conflicting. The purpose is to find a realization of the filter that meets each of the requirements to a sufficient degree to make it useful.

Analog signal processing is a type of signal processing conducted on continuous analog signals by some analog means. "Analog" indicates something that is mathematically represented as a set of continuous values. This differs from "digital" which uses a series of discrete quantities to represent signal. Analog values are typically represented as a voltage, electric current, or electric charge around components in the electronic devices. An error or noise affecting such physical quantities will result in a corresponding error in the signals represented by such physical quantities.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

In control theory, a causal system is a system where the output depends on past and current inputs but not future inputs—i.e., the output depends only on the input for values of .

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal processing, and telecommunications. For example, the propagation medium for wireless communication systems can often be modeled by linear systems.

In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal and some transform, time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.

In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency. The result is that all frequency components of the input signal are shifted in time by the same constant amount, which is referred to as the group delay. Consequently, there is no phase distortion due to the time delay of frequencies relative to one another.

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned and easily applied procedure for making some determination based on prior assumptions by the user, such as seasonality. Exponential smoothing is often used for analysis of time-series data.

<span class="mw-page-title-main">Causal filter</span>

In signal processing, a causal filter is a linear and time-invariant causal system. The word causal indicates that the filter output depends only on past and present inputs. A filter whose output also depends on future inputs is non-causal, whereas a filter whose output depends only on future inputs is anti-causal. Systems that are realizable must be causal because such systems cannot act on a future input. In effect that means the output sample that best represents the input at time comes out slightly later. A common design practice for digital filters is to create a realizable filter by shortening and/or time-shifting a non-causal impulse response. If shortening is necessary, it is often accomplished as the product of the impulse-response with a window function.

<span class="mw-page-title-main">Wavelet transform</span> Mathematical technique used in data compression and analysis

In mathematics, a wavelet series is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.

Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discrete-time Fourier transform (DTFT). In particular, the DTFT of the product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences. And each DTFT is a periodic summation of a continuous Fourier transform function. Although DTFTs are usually continuous functions of frequency, the concepts of periodic and circular convolution are also directly applicable to discrete sequences of data. In that context, circular convolution plays an important role in maximizing the efficiency of a certain kind of common filtering operation.

In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI system.

In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space. It is also a special case of convolution on groups when the group is the group of n-tuples of integers.

References

  1. IIR Filters and FIR Filters. (2012, June). Retrieved May 04, 2017, from http://zone.ni.com/reference/en-XX/help/370858K-01/genmaths/genmaths/calc_filterfir_iir/
  2. Nagai, N. (1990). Linear circuits, systems, and signal processing: Advanced theory and applications. New York: M. Dekker.
  3. Huang, T. S. (1981). Topics in applied physics: Two-Dimensional Digital Signal Processing I (3rd ed., Vol. 42, Topics in Applied Physics). Berlin: Springer.
  4. Huang, T. S. (1981). Topics in applied physics: Two-Dimensional Digital Signal Processing I (3rd ed., Vol. 42, Topics in Applied Physics). Berlin: Springer.