Video processing

Last updated

In electronics engineering, video processing is a particular case of signal processing, in particular image processing, which often employs video filters and where the input and output signals are video files or video streams. Video processing techniques are used in television sets, VCRs, DVDs, video codecs, video players, video scalers and other devices. For example—commonly only design and video processing is different in TV sets of different manufactures.[ citation needed ]

Video processor

Video processors are often combined with video scalers to create a video processor that improves the apparent definition of video signals. They perform the following tasks:

These can either be in chip form, or as a stand-alone unit to be placed between a source device (like a DVD player or set-top-box) and a display with less-capable processing. The most widely recognized video processor companies in the market are:

All of these companies' chips are in devices ranging from DVD upconverting players (for Standard Definition) to HD DVD/Blu-ray Disc players and set-top boxes, to displays like plasmas, DLP (both front and rear projection), LCD (both flat-panels and projectors), and LCOS/"SXRD". Their chips are also becoming more available in stand alone devices (see "External links" below for links to a few of these).

Related Research Articles

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">SCART</span> 21-pin connector for audio-visual equipment

SCART is a French-originated standard and associated 21-pin connector for connecting audio-visual (AV) equipment. The name SCART comes from Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs, "Radio and Television Receiver Manufacturers' Association", the French organisation that created the connector in the mid-1970s. The related European standard EN 50049 has then been refined and published in 1978 by CENELEC, calling it péritelevision, but it is commonly called by the abbreviation péritel in French.

<span class="mw-page-title-main">Y′UV</span> Mathematical color model

Y′UV, also written YUV, is the color model found in the PAL analogue color TV standard. A color is described as a Y′ component (luma) and two chroma components U and V. The prime symbol (') denotes that the luma is calculated from gamma-corrected RGB input and that it is different from true luminance. Today, the term YUV is commonly used in the computer industry to describe colorspaces that are encoded using YCbCr.

<span class="mw-page-title-main">HSL and HSV</span> Alternative representations of the RGB color model

HSL and HSV are alternative representations of the RGB color model, designed in the 1970s by computer graphics researchers. In these models, colors of each hue are arranged in a radial slice, around a central axis of neutral colors which ranges from black at the bottom to white at the top.

<span class="mw-page-title-main">Component video</span> Video signal that has been split into component channels

Component video is an analog video signal that has been split into two or more component channels. In popular use, it refers to a type of component analog video (CAV) information that is transmitted or stored as three separate signals. Component video can be contrasted with composite video in which all the video information is combined into a single signal that is used in analog television. Like composite, component cables do not carry audio and are often paired with audio cables.

<span class="mw-page-title-main">Gamut</span> Color reproduction capability

In color reproduction, including computer graphics and photography, the gamut, or color gamut, is a certain complete subset of colors. The most common usage refers to the subset of colors that can be accurately represented in a given circumstance, such as within a given color space or by a certain output device.

<span class="mw-page-title-main">YCbCr</span> Family of digital colour spaces

YCbCr, Y′CbCr, or Y Pb/Cb Pr/Cr, also written as YCBCR or Y′CBCR, is a family of color spaces used as a part of the color image pipeline in video and digital photography systems. Y′ is the luma component and CB and CR are the blue-difference and red-difference chroma components. Y′ is distinguished from Y, which is luminance, meaning that light intensity is nonlinearly encoded based on gamma corrected RGB primaries.

<span class="mw-page-title-main">YPbPr</span> Color space used in video electronics

YPbPr or Y'PbPr, also written as YPBPR, is a color space used in video electronics, in particular in reference to component video cables. Like YCbCr, it is based on gamma corrected RGB primaries; the two are numerically equivalent but YPBPR is designed for use in analog systems while YCBCR is intended for digital video. The EOTF may be different from common sRGB EOTF and BT.1886 EOTF. Sync is carried on the Y channel and is a bi-level sync signal, but in HD formats a tri-level sync is used and is typically carried on all channels.

<span class="mw-page-title-main">Hold-And-Modify</span> Display mode used in Commodore Amiga computers

Hold-And-Modify, usually abbreviated as HAM, is a display mode of the Commodore Amiga computer. It uses a highly unusual technique to express the color of pixels, allowing many more colors to appear on screen than would otherwise be possible. HAM mode was commonly used to display digitized photographs or video frames, bitmap art and occasionally animation. At the time of the Amiga's launch in 1985, this near-photorealistic display was unprecedented for a home computer and it was widely used to demonstrate the Amiga's graphical capability. However, HAM has significant technical limitations which prevent it from being used as a general purpose display mode.

<span class="mw-page-title-main">Trident Microsystems</span>

Trident Microsystems was a fabless semiconductor company that became in the 1990s a well-known supplier of integrated circuits for video display controllers used in video cards and on motherboards for desktop PCs and laptops. In 2003, it transformed itself into being a supplier of display processors for digital televisions, and primarily LCD TVs starting from 2005, at a time when the global LCD TV market started showing strong growth.

<span class="mw-page-title-main">VM Labs</span> Company

VM Labs was a semiconductor and platform company, founded in 1995 in Los Altos, Silicon Valley, California.

<span class="mw-page-title-main">Silicon Optix</span>

Silicon Optix Inc was a privately held fabless semiconductor company that designed and manufactured video/image digital processing integrated circuits. Originally a division of Genesis Microchip, Silicon Optix was spun off in 2000 by Paul Russo, the CEO of Genesis Microchip at the time. Silicon Optix acquired Teranex and its patents on the GAPP, which it incorporated into some of their products.

xvYCC or extended-gamut YCbCr is a color space that can be used in the video electronics of television sets to support a gamut 1.8 times as large as that of the sRGB color space. xvYCC was proposed by Sony, specified by the IEC in October 2005 and published in January 2006 as IEC 61966-2-4. xvYCC extends the ITU-R BT.709 tone curve by defining over-ranged values. xvYCC-encoded video retains the same color primaries and white point as BT.709, and uses either a BT.601 or BT.709 RGB-to-YCC conversion matrix and encoding. This allows it to travel through existing digital limited range YCC data paths, and any colors within the normal gamut will be compatible. It works by allowing negative RGB inputs and expanding the output chroma. These are used to encode more saturated colors by using a greater part of the RGB values that can be encoded in the YCbCr signal compared with those used in Broadcast Safe Level. The extra-gamut colors can then be displayed by a device whose underlying technology is not limited by the standard primaries.

<span class="mw-page-title-main">Image processor</span> Specialized digital signal processor used for image processing

An image processor, also known as an image processing engine, image processing unit (IPU), or image signal processor (ISP), is a type of media processor or specialized digital signal processor (DSP) used for image processing, in digital cameras or other devices. Image processors often employ parallel computing even with SIMD or MIMD technologies to increase speed and efficiency. The digital image processing engine can perform a range of tasks. To increase the system integration on embedded devices, often it is a system on a chip with multi-core processor architecture.

<span class="mw-page-title-main">Rec. 709</span> Standard for HDTV image encoding and signal characteristics

Rec. 709, also known as Rec.709, BT.709, and ITU 709, is a standard developed by ITU-R for image encoding and signal characteristics of high-definition television.

Sigma Designs, Inc., was an American public corporation that designed and built high-performance system-on-a-chip semiconductor technologies for Internet-based set-top boxes, DVD players/recorders, high-definition televisions, media processors, digital media adapters, portable media players and home connectivity products. In addition to platform processing and home network hardware, Sigma Designs also offered engineering support services and customized integrated circuit development.

<span class="mw-page-title-main">Color space</span> Standard that defines a specific range of colors

A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names, or structured with mathematical rigor. A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.

<span class="mw-page-title-main">Integrated Device Technology</span> U.S. semiconductor manufacturer

Integrated Device Technology, Inc., is an subsidiary of Renesas Electronics headquartered in San Jose, California, that designs, manufactures, and markets low-power, high-performance mixed-signal semiconductor products for the advanced communications, computing, and consumer industries. The company markets its products primarily to original equipment manufacturers (OEMs). Founded in 1980, the company began as a provider of complementary metal-oxide semiconductors (CMOS) for the communications business segment and computing business segments. The company focuses on three major areas: communications infrastructure, high-performance computing, and advanced power management.

<span class="mw-page-title-main">EBU colour bars</span> Television test card

The EBU colour bars is a television test card used to check if a video signal has been altered by recording or transmission, and what adjustments must be made to bring it back to specification. It is also used for setting a television monitor or receiver to reproduce chrominance and luminance information correctly. The EBU bars are most commonly shown arranged side-by-side in a vertical manner, though some broadcasters – such as TVP in Poland, and Gabon Télévision in Gabon – were known to have aired a horizontal version of the EBU bars.

References