DVB-CPCM

Last updated

DVB Content Protection & Copy Management, often abbreviated to DVB-CPCM or CPCM, is a digital rights management standard being developed by the DVB Project. Its main application is interoperable rights management of European digital television, though other countries may also adopt the standard.

Contents

How it works

CPCM specifies a way of adding information to digital content, such as television programs, to describe how and if content may be used and shared among other CPCM-enabled devices.

Content providers can use a range of flags stored with the content to describe how it may be used. All CPCM-enabled devices should obey these flags. These flags can allow or deny content to be either moved or copied to other CPCM devices. Content may also be provided for a set time limit, or forbid content to be played concurrently on separate devices.

Domains

CPCM can distinguish between devices inside and outside an "authorized domain" of devices. The authorized domain can include devices both in the home or in remote locations such as cars or vacation homes. It also specifies whether content should remain inside the home (the "local environment") or inside a physical region, such as a country (the "geographic area").

Robustness requirement

CPCM (as do all content protection mechanisms used for pay TV) contains a "robustness requirement" that demands that manufacturers design their technologies to resist end-user modification, which makes it impossible to implement a fully trusted CPCM in user-modifiable software like Linux.

Unlike most DRM systems, CPCM (in theory) supports a choice of robustness regimes rather than tying everyone to a single set of conditions. It is possible that different regimes may emerge e.g. distinct trust models for pay TV, free TV, or even public domain type content. Each of these could have appropriate levels of robustness requirement. It would even be possible to define a CPCM C&R regime that permits implementation in user-modifiable software, though this would probably not be trusted to receive content from most commercial services.

At this time no regime has been announced, so any restrictions have yet to be identified

Broadcast Flag

CPCM is sometimes compared to the failed U.S. broadcast flag: the DVB has now defined signals within the DVB Service Information (DVB-SI) which allow a free-to-air broadcaster to signal correct behaviour for content protection systems such as CPCM. These signals are not specific to use with CPCM, and can also be used to control HDCP or similar systems. However, CPCM does defined an exact mapping of these SI signals to the CPCM usage state information. See https://web.archive.org/web/20060927002425/http://www.dvb.org/technology/dvb-cpcm/ for further information.

It is worth noting that Europe does not have a single regulating authority like the FCC, so an exact parallel to the enforcement rules of the failed US approach is unlikely.

HDCP and DTCP-IP

HDCP protects a single wire connection, typically DVI or HDMI. CPCM is network independent and can be used on LAN, WiFi, and in theory even on IEEE 1394 FireWire links.

DTCP-IP is a link protection system similar to HDCP, but operates over a LAN or WLAN connection.

Both HDCP and DTCP-IP are link protection "render and toss" technologies that generally prohibit the receiving device from recording or redistributing the content. Also, both are designed to prevent connection of devices that are not in close proximity to one another. CPCM by contrast can allow for recording and/or remote access depending on the specific rights granted with the content.

Publication

The full technical specification of DVB-CPCM is now published by the DVB Project and can be freely downloaded from this location.

The normative sections have now all been approved for publication by the DVB Steering Board, and will be published by ETSI as a formal European Standard as ETSI TS 102 825-X where X refers to the Part number of specification.

Nobody has yet stepped forward to provide a Compliance and Robustness regime for the standard (though several are rumoured to be in development), so it is not presently possible to fully implement a system, as there is nowhere to obtain the necessary device certificates.

See also

Current standard (Official sites)

Related Research Articles

<span class="mw-page-title-main">DVB</span> Open standard for digital television broadcasting

Digital Video Broadcasting (DVB) is a set of international open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium, and are published by a Joint Technical Committee (JTC) of the European Telecommunications Standards Institute (ETSI), European Committee for Electrotechnical Standardization (CENELEC) and European Broadcasting Union (EBU).

<span class="mw-page-title-main">Programme Delivery Control</span> Television standard to indicate start and end of programmes

Programme delivery control (PDC) is specified by the standard ETS 300 231, published by the European Telecommunications Standards Institute (ETSI). This specifies the signals sent as hidden codes in the teletext service, indicating when transmission of a programme starts and finishes.

Integrated Services Digital Broadcasting is a Japanese broadcasting standard for digital television (DTV) and digital radio.

A broadcast flag is a bit field sent in the data stream of a digital television program that indicates whether or not the data stream can be recorded, or if there are any restrictions on recorded content. Possible restrictions include the inability to save an unencrypted digital program to a hard disk or other non-volatile storage, inability to make secondary copies of recorded content, forceful reduction of quality when recording, and inability to skip over commercials.

<span class="mw-page-title-main">HDMI</span> Proprietary interface for transmitting digital audio and video data

High-Definition Multimedia Interface (HDMI) is a proprietary audio/video interface for transmitting uncompressed video data and compressed or uncompressed digital audio data from an HDMI-compliant source device, such as a display controller, to a compatible computer monitor, video projector, digital television, or digital audio device. HDMI is a digital replacement for analog video standards.

High-bandwidth Digital Content Protection (HDCP) is a form of digital copy protection developed by Intel Corporation to prevent copying of digital audio and video content as it travels across connections. Types of connections include DisplayPort (DP), Digital Visual Interface (DVI), and High-Definition Multimedia Interface (HDMI), as well as less popular or now deprecated protocols like Gigabit Video Interface (GVIF) and Unified Display Interface (UDI).

Digital Transmission Content Protection (DTCP) is a digital rights management (DRM) technology that restricts digital home technologies including DVD players and televisions by encrypting interconnections between devices. This permits the distribution of content through other devices such as personal computers or portable media players, if they also implement the DTCP standards. DTCP has also been referred to as "5C" content protection, a reference to the five companies that created DTCP; Hitachi, Intel, Matsushita, Sony, and Toshiba.

DVB-H is one of three prevalent mobile TV formats. It is a technical specification for bringing broadcast services to mobile handsets. DVB-H was formally adopted as ETSI standard EN 302 304 in November 2004. The DVB-H specification can be downloaded from the official DVB-H website. From March 2008, DVB-H is officially endorsed by the European Union as the "preferred technology for terrestrial mobile broadcasting". The major competitors of this technology are Qualcomm's MediaFLO system, the 3G cellular system based MBMS mobile-TV standard, and the ATSC-M/H format in the U.S. DVB-SH now and DVB-NGH in the future are possible enhancements to DVB-H, providing improved spectral efficiency and better modulation flexibility. DVB-H has been a commercial failure, and the service is no longer on-air. Ukraine was the last country with a nationwide broadcast in DVB-H, which began transitioning to DVB-T2 during 2019.

<span class="mw-page-title-main">Common Interface</span> Television technology

In Digital Video Broadcasting, the Common Interface is a technology which allows decryption of pay TV channels. Pay TV stations want to choose which encryption method to use. The Common Interface allows TV manufacturers to support many different pay TV stations, by allowing to plug in exchangeable conditional-access modules (CAM) for various encryption schemes.

Globally Executable MHP (GEM) is a DVB specification of a Java based middleware for TV broadcast receivers, IPTV terminals and Blu-ray players. GEM is an ETSI standard and an ITU "Recommendation”. GEM defines a set of common functionalities which are independent from the signaling and protocols of a specific transmission network and enables to write interoperable Java applications for TV. GEM is not intended to be directly implemented, but rather forms the basis for broader specifications targeting a particular network infrastructure or class of device. GEM defines profiles for different device classes (targets) – these define the set of available features of GEM for this device class. Currently GEM defines targets for broadcast, packaged media (Blu-Ray) and IPTV. Combinations of these targets can be combined into a hybrid GEM platform, which enables to build devices with multiple network interfaces, such as a combined broadcast/IPTV set-top box.

Copy Generation Management System – Analog (CGMS-A) is a copy protection mechanism for analog television signals. It consists of a waveform inserted into the non-picture vertical blanking interval (VBI) of an analogue video signal. If a compatible recording device detects this waveform, it may block or restrict recording of the video content.

In television technology, Active Format Description (AFD) is a standard set of codes that can be sent in the MPEG video stream or in the baseband SDI video signal that carries information about their aspect ratio and other active picture characteristics. It has been used by television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format. It has also been used by broadcasters to dynamically control how down-conversion equipment formats widescreen 16:9 pictures for 4:3 displays.

The Broadcast Protection Discussion Group (BPDG) is a working group of content providers, television broadcasters, consumer electronics manufacturers, information technology companies, interested individuals and consumer activists. The group was formed specifically for the purpose of evaluating the suitability of the broadcast flag for preventing unauthorized redistribution and to determine whether there was substantial support for the broadcast flag. The group completed its mission with the release of the BPDG Report.

WirelessHD, also known as UltraGig, is a proprietary standard owned by Silicon Image for wireless transmission of high-definition video content for consumer electronics products. The consortium currently has over 40 adopters; key members behind the specification include Broadcom, Intel, LG, Panasonic, NEC, Samsung, SiBEAM, Sony, Philips and Toshiba. The founders intend the technology to be used for Consumer Electronic devices, PCs, and portable devices.

ETSI Satellite Digital Radio describes a standard of satellite digital radio. It is an activity of the European standardisation organisation ETSI.

The HDCP repeater bit is a part of the High-bandwidth Digital Content Protection specification and applies to intermediate devices between the Source device and the Presentation device. For example, a Blu-ray connected by HDMI to an AV Receiver which in turn connected to a TV using HDMI makes the AV Receiver an HDCP Repeater. The AV Receiver reports to the Transmitter whether it is a Repeater or a Receiver using the REPEATER bit.

DVB-RCS is an acronym for Digital Video Broadcasting - Return Channel via Satellite or. It is a specification for an interactive on-demand multimedia satellite communication system formulated in 1999 by the DVB consortium.

Compliance and Robustness, sometimes abbreviated as C&R, refers to the legal structure or regime underlying a Digital Rights Management (DRM) system. In many cases, the C&R regime for a given DRM is provided by the same company that sells the DRM solution. For example, RealNetworks Helix or Microsoft Windows Media DRM.

Digital rights management (DRM) is the management of legal access to digital content. Various tools or technological protection measures (TPM) like access control technologies, can restrict the use of proprietary hardware and copyrighted works. DRM technologies govern the use, modification and distribution of copyrighted works and of systems that enforce these policies within devices. DRM technologies include licensing agreements and encryption.

<span class="mw-page-title-main">Hybrid Broadcast Broadband TV</span> Industry standard for hybrid digital television

Hybrid Broadcast Broadband TV (HbbTV) is both an industry standard and promotional initiative for hybrid digital TV to harmonise the broadcast, Internet Protocol Television (IPTV), and broadband delivery of entertainment to the end consumer through connected TVs and set-top boxes. The HbbTV Association, comprising digital broadcasting and Internet industry companies, has established a standard for the delivery of broadcast TV and broadband TV to the home, through a single user interface, creating an open platform as an alternative to proprietary technologies. Products and services using the HbbTV standard can operate over different broadcasting technologies, such as satellite, cable, or terrestrial networks.