Feeder line (network)

Last updated
A diagram of a hierarchical communications network. Feeder lines (in red) provide communication with important nodes. Hierarchical Communication Network.png
A diagram of a hierarchical communications network. Feeder lines (in red) provide communication with important nodes.

A feeder line is a peripheral route or branch in a network, which connects smaller or more remote nodes with a route or branch carrying heavier traffic. The term is applicable to any system based on a hierarchical network.

In telecommunications, a feeder line branches from a main line or trunk line.

In electrical engineering, a feeder line is a type of transmission line. In addition Feeders are the power lines through which electricity is transmitted in power systems. Feeder transmits power from Generating station or substation to the distribution points. They are similar to distributors except the fact that there is no intermediate tapping done and hence the current flow remains same at the sending as well as the receiving end. In radio engineering, a feeder connects radio equipment to an antenna, usually open wire (air-insulated wire line) or twin-lead from a shortwave transmitter. In power engineering, a feeder line is part of an electric distribution network, usually a radial circuit of intermediate voltage.

The concept of feeder lines is also important in public transportation. The term is particularly used in US air travel and rail transport. Efficient, high-capacity routes connect important nodes while feeder lines connect these nodes to departure and destination points.

See also


Related Research Articles

Wireless LAN Computer network that links devices using wireless communication within a limited area

A wireless LAN (WLAN) is a wireless computer network that links two or more devices using wireless communication to form a local area network (LAN) within a limited area such as a home, school, computer laboratory, campus, or office building. This gives users the ability to move around within the area and remain connected to the network. Through a gateway, a WLAN can also provide a connection to the wider Internet.

Electric power transmission Bulk movement of electrical energy from a generating site to an electrical substation

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines which facilitate this movement are known as a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

Network topology Arrangement of the various elements of a computer network; topological structure of a network and may be depicted physically or logically

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

Transmission medium Conduit for signal propagation

A transmission medium is something that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

Communication channel

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Electric power distribution Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electric power; it carries electricity from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 35 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

A Controller Area Network is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles to save on copper, but it can also be used in many other contexts. For each device, the data in a frame is transmitted sequentially but in such a way that if more than one device transmits at the same time, the highest priority device can continue while the others back off. Frames are received by all devices, including by the transmitting device.

Spoke–hub distribution paradigm

The spoke-hub distribution paradigm is a form of transport topology optimization in which traffic planners organize routes as a series of "spokes" that connect outlying points to a central "hub". Simple forms of this distribution/connection model compare with point-to-point transit systems, in which each point has a direct route to every other point, and which modeled the principal method of transporting passengers and freight until the 1970s. Delta Air Lines pioneered the spoke-hub distribution model in 1955, and the concept revolutionized the transportation logistics industry after Federal Express demonstrated its value in the early 1970s. In the late 1970s the telecommunications and information-technology sector subsequently adopted this distribution topology, dubbing it the star network network topology.

Electrical substation

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages.

In telecommunications, a point-to-point connection refers to a communications connection between two communication endpoints or nodes. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other. This is contrasted with a point-to-multipoint or broadcast connection, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines and microwave radio relay.

Hybrid fiber-coaxial (HFC) is a telecommunications industry term for a broadband network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.

Mesh networking Computer networking using a mesh topology

A mesh network is a local network topology in which the infrastructure nodes connect directly, dynamically and non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data from/to clients. This lack of dependency on one node allows for every node to participate in the relay of information. Mesh networks dynamically self-organize and self-configure, which can reduce installation overhead. The ability to self-configure enables dynamic distribution of workloads, particularly in the event a few nodes should fail. This in turn contributes to fault-tolerance and reduced maintenance costs.

A wireless distribution system (WDS) is a system enabling the wireless interconnection of access points in an IEEE 802.11 network. It allows a wireless network to be expanded using multiple access points without the traditional requirement for a wired backbone to link them. The notable advantage of WDS over other solutions is that it preserves the MAC addresses of client frames across links between access points.

Split-phase electric power Type of single-phase electric power distribution

A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. Its primary advantage is that it saves conductor material over a single-ended single-phase system, while only requiring a single phase on the supply side of the distribution transformer.

Overhead power line Above-ground structure for bulk transfer and distribution of electricity

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy across large distances. It consists of one or more uninsulated electrical cables suspended by towers or poles.

DSL modem Type of computer network modem; network equipment

A digital subscriber line (DSL) modem is a device used to connect a computer or router to a telephone line which provides the digital subscriber line service for connection to the Internet, which is often called DSL broadband. The modem connects to a single computer, through an Ethernet port, USB port, or is installed in a computer PCI slot.

Computer network Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers uses common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

Telecommunications engineering Engineering science that deals with the recording, transmission, processing and storage of messages

Telecommunications Engineering is an engineering discipline centered on electrical and computer engineering which seeks to support and enhance telecommunication systems. The work ranges from basic circuit design to strategic mass developments. A telecommunication engineer is responsible for designing and overseeing the installation of telecommunications equipment and facilities, such as complex electronic switching systems, and other plain old telephone service facilities, optical fiber cabling, IP networks, and microwave transmission systems. Telecommunications engineering also overlaps with broadcast engineering.

Internet 0 is a low-speed physical layer designed to route 'IP over anything.' It was developed at MIT's Center for Bits and Atoms by Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. When it was invented, a number of other proposals were being labelled as "internet 2." The name was chosen to emphasize that this was designed to be a slow, but very inexpensive internetworking system, and forestall "high-performance" comparison questions such as "how fast is it?"