Fermi acceleration

Last updated

Fermi acceleration, [1] [2] sometimes referred to as diffusive shock acceleration (a subclass of Fermi acceleration [3] ), is the acceleration that charged particles undergo when being repeatedly reflected, usually by a magnetic mirror (see also Centrifugal mechanism of acceleration). It receives its name from physicist Enrico Fermi who first proposed the mechanism. This is thought to be the primary mechanism by which particles gain non-thermal energies in astrophysical shock waves. It plays a very important role in many astrophysical models, mainly of shocks including solar flares and supernova remnants. [4]

Contents

There are two types of Fermi acceleration: first-order Fermi acceleration (in shocks) and second-order Fermi acceleration (in the environment of moving magnetized gas clouds). In both cases the environment has to be collisionless in order for the mechanism to be effective. This is because Fermi acceleration only applies to particles with energies exceeding the thermal energies, and frequent collisions with surrounding particles will cause severe energy loss and as a result no acceleration will occur.

First order Fermi acceleration

Shock waves typically have moving magnetic inhomogeneities both preceding and following them. Consider the case of a charged particle traveling through the shock wave (from upstream to downstream). If it encounters a moving change in the magnetic field, this can reflect it back through the shock (downstream to upstream) at increased velocity. If a similar process occurs upstream, the particle will again gain energy. These multiple reflections greatly increase its energy. The resulting energy spectrum of many particles undergoing this process (assuming that they do not influence the structure of the shock) turns out to be a power law:

where the spectral index depends, for non-relativistic shocks, only on the compression ratio of the shock.
The term "First order" comes from the fact that the energy gain per shock crossing is proportional to , the velocity of the shock divided by the speed of light.

The injection problem

A mystery of first order Fermi processes is the injection problem. In the environment of a shock, only particles with energies that exceed the thermal energy by much (a factor of a few at least) can cross the shock and 'enter the game' of acceleration. It is presently unclear what mechanism causes the particles to initially have energies sufficiently high to do so. [5]

Second order Fermi acceleration

Second order Fermi acceleration relates to the amount of energy gained during the motion of a charged particle in the presence of randomly moving "magnetic mirrors". So, if the magnetic mirror is moving towards the particle, the particle will end up with increased energy upon reflection. The opposite holds if the mirror is receding. This notion was used by Fermi (1949) [3] to explain the mode of formation of cosmic rays. In this case the magnetic mirror is a moving interstellar magnetized cloud. In a random motion environment, Fermi argued, the probability of a head-on collision is greater than a head-tail collision, so particles would, on average, be accelerated. This random process is now called second-order Fermi acceleration, because the mean energy gain per bounce depends on the mirror velocity squared, . The resulting energy spectrum anticipated from this physical setup, however, is not universal as in the case of diffusive shock acceleration.

See also

Related Research Articles

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Supernova remnant</span> Remnants of an exploded star

A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar material it sweeps up and shocks along the way.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation emitted by charged particles accelerated perpendicular to their velocity

Synchrotron radiation is the electromagnetic radiation emitted when relativistically charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Fermi liquid theory</span> Theoretical model in physics

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of the conduction electrons in most metals at sufficiently low temperatures. The theory describes the behavior of many-body systems of particles in which the interactions between particles may be strong. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.

<span class="mw-page-title-main">Thermal radiation</span> Electromagnetic radiation generated by the thermal motion of particles

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material is converted to electromagnetic radiation. All matter with a temperature greater than absolute zero emits thermal radiation. At room temperature, most of the emission is in the infrared (IR) spectrum. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

In physics, a quantum phase transition (QPT) is a phase transition between different quantum phases. Contrary to classical phase transitions, quantum phase transitions can only be accessed by varying a physical parameter—such as magnetic field or pressure—at absolute zero temperature. The transition describes an abrupt change in the ground state of a many-body system due to its quantum fluctuations. Such a quantum phase transition can be a second-order phase transition. Quantum phase transitions can also be represented by the topological fermion condensation quantum phase transition, see e.g. strongly correlated quantum spin liquid. In case of three dimensional Fermi liquid, this transition transforms the Fermi surface into a Fermi volume. Such a transition can be a first-order phase transition, for it transforms two dimensional structure into three dimensional. As a result, the topological charge of Fermi liquid changes abruptly, since it takes only one of a discrete set of values.

In physics, Landau damping, named after its discoverer, Soviet physicist Lev Davidovich Landau (1908–68), is the effect of damping of longitudinal space charge waves in plasma or a similar environment. This phenomenon prevents an instability from developing, and creates a region of stability in the parameter space. It was later argued by Donald Lynden-Bell that a similar phenomenon was occurring in galactic dynamics, where the gas of electrons interacting by electrostatic forces is replaced by a "gas of stars" interacting by gravitational forces. Landau damping can be manipulated exactly in numerical simulations such as particle-in-cell simulation. It was proved to exist experimentally by Malmberg and Wharton in 1964, almost two decades after its prediction by Landau in 1946.

<span class="mw-page-title-main">Alfvén wave</span> Low-frequency plasma wave

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.

In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the crystalline lattice and from the occupation of electronic energy bands. The existence of a Fermi surface is a direct consequence of the Pauli exclusion principle, which allows a maximum of one electron per quantum state. The study of the Fermi surfaces of materials is called fermiology.

<span class="mw-page-title-main">Bow shock</span> Boundary between a magnetosphere and an ambient magnetized medium

In astrophysics, a bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.

In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

Gamma-ray burst emission mechanisms are theories that explain how the energy from a gamma-ray burst progenitor is turned into radiation. These mechanisms are a major topic of research as of 2007. Neither the light curves nor the early-time spectra of GRBs show resemblance to the radiation emitted by any familiar physical process.

The Fermi–Ulam model (FUM) is a dynamical system that was introduced by Polish mathematician Stanislaw Ulam in 1961.

<span class="mw-page-title-main">Shock waves in astrophysics</span> Astrophysics shock waves

Shock waves are common in astrophysical environments.

<span class="mw-page-title-main">Plasma (physics)</span> State of matter

Plasma is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.

Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects. It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for ultra-high-energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the Greisen–Zatsepin–Kuzmin limit.

References

  1. Krymskii G.F. (1977) Dokl. Akad. Nauk SSSR 234, 1306
  2. Bell, Anthony R. (1978). "The acceleration of cosmic rays in shock fronts - I". Monthly Notices of the Royal Astronomical Society . 182 (2): 147–156. Bibcode:1978MNRAS.182..147B. doi: 10.1093/mnras/182.2.147 . ISSN   0035-8711.
  3. 1 2 On the Origin of the Cosmic Radiation, E. Fermi, Physical Review 75, pp. 1169-1174, 1949
  4. Longair, Malcolm S. (1994). High Energy Astrophysics, Volume 2. Cambridge University Press. ISBN   978-0-521-43584-0.
  5. André Balogh; Rudolf A. Treumann. "Physics of Collisionless Shocks: Space Plasma Shock Waves". 2013. Section 7.4 "The Injection Problem". p. 362.