Fermi heap and Fermi hole

Last updated

Fermi heap and Fermi hole refer to two closely related quantum phenomena that occur in many-electron atoms. They arise due to the Pauli exclusion principle, according to which no two electrons can be in the same quantum state in a system (which, accounting for electrons' spin, means that there can be up to two electrons in the same orbital). Due to indistinguishability of elementary particles, the probability of a measurement yielding a certain eigenvalue must be invariant when electrons are exchanged, which means that the probability amplitude must either remain the same or change sign. For instance, consider an excited state of the helium atom in which electron 1 is in the 1s orbital and electron 2 has been excited to the 2s orbital. It is not possible, even in principle, to distinguish electron 1 from electron 2. In other words, electron 2 might be in the 1s orbital with electron 1 in the 2s orbital. As they are fermions, electrons must be described by an anti-symmetric wavefunction which must change sign under electron exchange, resulting in either a Fermi hole (having a lower probability of being found close to each other) or a Fermi heap (having a higher probability of being found close to each other). Since electrons repel one another electrically, Fermi holes and Fermi heaps have drastic effects on the energy of many-electron atoms, although the effect can be illustrated in the case of the helium atom.

Neglecting the spin–orbit interaction, the wavefunction for the two electrons can be written as , where we have split the wavefunction into spatial and spin parts. As mentioned above, needs to be antisymmetric, and so the antisymmetry can arise either from the spin part or the spatial part. There are 4 possible spin states for this system:

However, only the first two are symmetric or anti-symmetric to electron exchange (which corresponds to exchanging 1 and 2). The last two need to be rewritten as:

The first three are symmetric, whereas the last one is anti-symmetric. Say one of the electrons in the helium atom is excited to the 2s state. In this case, its spatial wavefunction will have to be either anti-symmetric (requiring a symmetric spin wavefunction):

Or symmetric (requiring an anti-symmetric spin wavefunction):

In the first case, the possible spin states are the three symmetric ones listed above, and this state is commonly referred to as a triplet. The triplet state is not allowed in the ground state of the helium atom, since the spatial function in this case is symmetric and the spin function needs to be anti-symmetric. We can observe that if we take , the probability amplitude tends to zero, meaning that the electrons are unlikely to be close to each other, which is referred to as Fermi hole and is responsible for the space-occupying properties of matter.

Similarly, in the second case, there is only one possible spin state, , and so this state is commonly referred to as a singlet. We can also observe that the probability amplitude is higher when electrons are close to each other, which means that it is slightly more likely that the electrons will be observed together. This phenomenon is referred to as Fermi heap, and plays an important role in chemical bonding by allowing both electrons to be localized in the internuclear region and thus shielding the positively charged nuclei from electrostatic repulsion with one another.

Since electrons repel one another, Fermi holes and Fermi heaps have drastic effects on the energy of many-electron atoms, such as the periodic properties of the elements. Since bringing electrons together requires doing work, Fermi heaps have higher energy than Fermi holes. This result is generalized in terms of multiplicity by Hund's rule which states that the higher the spin multiplicity of a state (number of spin states it is allowed to have by the exclusion principle), the lower its energy will be.

Animations of Fermi holes and Fermi heaps in the carbon atom are here. [1] Details of the origin and significance of Fermi holes and Fermi heaps in the structure of atoms are discussed here. [2]

Related Research Articles

<span class="mw-page-title-main">Atomic orbital</span> Function describing an electron in an atom

In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term atomic orbital may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital.

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

In quantum mechanics, identical particles are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, elementary particles, composite subatomic particles, as well as atoms and molecules. Quasiparticles also behave in this way. Although all known indistinguishable particles only exist at the quantum scale, there is no exhaustive list of all possible sorts of particles nor a clear-cut limit of applicability, as explored in quantum statistics.

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.

In quantum mechanics, a Slater determinant is an expression that describes the wave function of a multi-fermionic system. It satisfies anti-symmetry requirements, and consequently the Pauli principle, by changing sign upon exchange of two electrons. Only a small subset of all possible fermionic wave functions can be written as a single Slater determinant, but those form an important and useful subset because of their simplicity.

<span class="mw-page-title-main">Azimuthal quantum number</span> Quantum number denoting orbital angular momentum

In quantum mechanics, the azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron. It is also known as the orbital angular momentum quantum number, orbital quantum number, subsidiary quantum number, or second quantum number, and is symbolized as .

In quantum physics, a bound state is a quantum state of a particle subject to a potential such that the particle has a tendency to remain localized in one or more regions of space. The potential may be external or it may be the result of the presence of another particle; in the latter case, one can equivalently define a bound state as a state representing two or more particles whose interaction energy exceeds the total energy of each separate particle. One consequence is that, given a potential vanishing at infinity, negative-energy states must be bound. In general, the energy spectrum of the set of bound states is discrete, unlike free particles, which have a continuous spectrum.

In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.

<span class="mw-page-title-main">Franck–Condon principle</span> Quantum chemistry rule regarding vibronic transitions

The Franck–Condon principle is a rule in spectroscopy and quantum chemistry that explains the intensity of vibronic transitions. The principle states that during an electronic transition, a change from one vibrational energy level to another will be more likely to happen if the two vibrational wave functions overlap more significantly.

Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate. It uses a linear combination of configuration state functions (CSF), or configuration determinants, to approximate the exact electronic wavefunction of an atom or molecule. In an MCSCF calculation, the set of coefficients of both the CSFs or determinants and the basis functions in the molecular orbitals are varied to obtain the total electronic wavefunction with the lowest possible energy. This method can be considered a combination between configuration interaction and Hartree–Fock.

<span class="mw-page-title-main">Degenerate energy levels</span> Energy level of a quantum system that corresponds to two or more different measurable states

In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.

In quantum chemistry, a configuration state function (CSF), is a symmetry-adapted linear combination of Slater determinants. A CSF must not be confused with a configuration. In general, one configuration gives rise to several CSFs; all have the same total quantum numbers for spin and spatial parts but differ in their intermediate couplings.

In chemistry and physics, the exchange interaction is a quantum mechanical effect that only occurs between identical particles. Despite sometimes being called an exchange force in an analogy to classical force, it is not a true force as it lacks a force carrier.

A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator. It is also called energy eigenvector, energy eigenstate, energy eigenfunction, or energy eigenket. It is very similar to the concept of atomic orbital and molecular orbital in chemistry, with some slight differences explained below.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.

<span class="mw-page-title-main">Helium atom</span> Atom of helium

A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with either one or two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom.

In quantum chemistry, Brillouin's theorem, proposed by the French physicist Léon Brillouin in 1934, relates to Hartree–Fock wavefunctions. Hartree–Fock, or the self-consistent field method, is a non-relativistic method of generating approximate wavefunctions for a many-bodied quantum system, based on the assumption that each electron is exposed to an average of the positions of all other electrons, and that the solution is a linear combination of pre-specified basis functions.

References

  1. Dill, Dan, Fermi holes and Fermi heaps. URL checked 14 August 2019
  2. Dill, Dan, Many-electron atoms: Fermi holes and Fermi heaps. URL checked 14 August 2019

Bibliography