Ferricoronadite

Last updated
Ferricoronadite
Ferricoronadite.jpg
Greyish brown crystals of the very rare Pb-Mn mineral ferricoronadite (IMA 2015-093) from one of the only two known localities worldwide: Cowshill, Weardale, County Durham, United Kingdom.
General
Category Mineral
Formula
(repeating unit)
Pb(Mn4+6Fe3+2)O16
IMA symbol Fcor [1]
Strunz classification 4.DK.4.DK
Crystal system Tetragonal
Space group I4/m
Unit cell a = 9.9043 Å, c = 2.8986 Å Z=1
Identification
Colourblack
Fracture uneven
Tenacity brittle
Luster sub-metallic
Diaphaneity Opaque
Specific gravity 5.538
Common impuritiesBa2+,Mn3+,Ti,Al3+

Ferricoronadite is a lead mineral discovered in 2016 by Chukanov et al. near Nezhilovo, North Macedonia. Its simplified elemental formula is Pb(Mn 64+ Fe 23+)O 16, and it is found in a matrix of zinc-dominant spinels. Ferricoronadite is named as an analogue of coronadite. [2]

Related Research Articles

<span class="mw-page-title-main">Chondrodite</span>

Chondrodite is a nesosilicate mineral with formula (Mg,Fe)
5
(SiO
4
)
2
(F,OH,O)
2
. Although it is a fairly rare mineral, it is the most frequently encountered member of the humite group of minerals. It is formed in hydrothermal deposits from locally metamorphosed dolomite. It is also found associated with skarn and serpentinite. It was discovered in 1817 at Pargas in Finland, and named from the Greek for "granule", which is a common habit for this mineral.

<span class="mw-page-title-main">Birnessite</span> Manganese hydroxide mineral

Birnessite (nominally MnO2.nH2O) is a hydrous manganese dioxide mineral with a chemical formula of Na0.7Ca0.3Mn7O14·2.8H2O. It is the main manganese mineral species at the Earth's surface, and commonly occurs as fine-grained, poorly crystallized aggregates in soils, sediments, grain and rock coatings (e.g., desert varnish), and marine ferromanganese nodules and crusts. It was discovered at Birness, Aberdeenshire, Scotland.

<span class="mw-page-title-main">Jacobsite</span>

Jacobsite is a manganese iron oxide mineral. It is in the spinel group and forms a solid solution series with magnetite. The chemical formula is (Mn,Mg)Fe2O4 or with oxidation states and substitutions: (Mn2+,Fe2+,Mg)(Fe3+,Mn3+)2O4.

<span class="mw-page-title-main">Zanazziite</span>

Zanazziite is a complex hydrated phosphate mineral from the roscherite group. It is a magnesium beryllium phosphate mineral. Zanazziite arises as barrel-shaped crystals and can reach up to 4 mm. It grows alongside quartz minerals. It is found in the crevices of Lavra da Ilha pegmatite, near Taquaral, in northeastern Minas Gerais, Brazil. Zanazziite is named after Pier F. Zanazzi. Zanazziite has an ideal chemical formula of Ca2Mg5Be4(PO4)6(OH)4·6H2O.

Zincobotryogen is a hydrous sulfate mineral with the chemical formula (Zn,Mg,Mn)Fe3+(SO4)2(OH)·7H2O. It forms bright orange red monoclinic prismatic crystals that exhibit a vitreous to greasy luster. Its specific gravity is 2.201 and it has a Mohs hardness of 2.5.

<span class="mw-page-title-main">Arthurite</span>

Arthurite is a mineral composed of divalent copper and iron ions in combination with trivalent arsenate, phosphate and sulfate ions with hydrogen and oxygen. Initially discovered by Sir Arthur Russell in 1954 at Hingston Down Consols mine in Calstock, Cornwall, England, arthurite is formed as a resultant mineral in the oxidation region of some copper deposits by the variation of enargite or arsenopyrite. The chemical formula of Arthurite is CuFe23+(AsO4,PO4,SO4)2(O,OH)2•4H2O.

Eudialyte group is a group of complex trigonal zircono- and, more rarely, titanosilicate minerals with general formula [N(1)N(2)N(3)N(4)N(5)]3[M(1a)M(1b)]3M(2)3M(4)Z3[Si24O72]O'4X2, where N(1) and N(2) and N(3) and N(5) = Na+ and more rarely H3O+ or H2O, N(4) = Na+, Sr2+, Mn2+ and more rarely H3O+ or H2O or K+ or Ca2+ or REE3+ (rare earth elements), M(1) and M(1b) = Ca2+, M(1a) = Ca2+ or Mn2+ or Fe2+, M(2) = Fe (both II and III), Mn and rarely Na+, K+ or Zr4+, M(3) = Si, Nb and rarely W, Ti and [] (vacancy), M(4) = Si and or rarely [], Z Zr4+ and or rarely Ti4+, and X = OH, Cl and more rarely CO32− or F. Some of the eudialyte-like structures can even be more complex, however, in general, its typical feature is the presence of [Si3O9]6− and [Si9O27]18− ring silicate groups. Space group is usually R3m or R-3m but may be reduced to R3 due to cation ordering. Like other zirconosilicates, the eudialyte group minerals possess alkaline ion-exchange properties, as microporous materials.

Alsakharovite-Zn (IMA symbol: Ask-Zn) is an extremely rare alkaline strontium zinc titanium silicate mineral from the cyclosilicates class, with the chemical formula NaSrKZn(Ti,Nb)4(Si4O12)2(O,OH)4·7H2O, from alkaline pegmatites. It belongs to the labuntsovite group.

<span class="mw-page-title-main">Zemannite</span>

Zemannite is a very rare oxide mineral with the chemical formula Mg0.5ZnFe3+[TeO3]3·4.5H2O. It crystallizes in the hexagonal crystal system and forms small prismatic brown crystals. Because of the rarity and small crystal size, zemannite has no applications and serves as a collector's item.

<span class="mw-page-title-main">Zinclipscombite</span>

Zinclipscombite is a dark-green to brown zinc iron phosphate mineral with the formula Zn(Fe3+)2(PO4)2(OH)2. It occurs as fibrous spheres and exhibits tetragonal crystal structure.

<span class="mw-page-title-main">Greifensteinite</span>

Greifensteinite is beryllium phosphate mineral with formula: Ca2Fe2+5Be4(PO4)6(OH)4·6H2O. It is the Fe2+ dominant member of the roscherite group. It crystallizes in the monoclinic crystal system and typically forms prismatic dark olive green crystals.

<span class="mw-page-title-main">Ikranite</span> Mineral member of the eudialyte group

Ikranite is a member of the eudialyte group, named after the Shubinov Institute of Crystallography of the Russian Academy of Sciences. It is a cyclosilicate mineral that shows trigonal symmetry with the space group R3m, and is often seen with a pseudo-hexagonal habit. Ikranite appears as translucent and ranges in color from yellow to a brownish yellow. This mineral ranks a 5 on Mohs Scale of Hardness, though it is considered brittle, exhibiting conchoidal fracture when broken.

Ilyukhinite is a very rare mineral of the eudialyte group, with formula (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2·3H2O. The formula given is simplified and does not show the presence of cyclic silicate groups. Ilyukhinite is the second group representative with species-defining hydronium ion after aqualite.

Filipstadite is a very rare mineral of the spinel group, with the formula (Mn,Mg)(Sb5+0.5Fe3+0.5)O4. It is isometric, although it was previously though to be orthorhombic. When compared to a typical spinel, both the octahedral and tetrahedral sites are split due to cation ordering. Filipstadite is chemically close to melanostibite. The mineral comes from Långban, Sweden, a manganese skarn deposit famous for many rare minerals.

<span class="mw-page-title-main">Jinshajiangite</span>

Jinshajiangite is a rare silicate mineral named after the Jinshajiang river in China. Its currently accepted formula is BaNaFe4Ti2(Si2O7)2O2(OH)2F. It gives a name of the jinshajiangite group. The mineral is associated with alkaline rocks. In jinshajiangite, there is a potassium-to-barium, calcium-to-sodium, manganese-to-iron and iron-to-titanium diadochy substitution. Jinshajiangite is the iron-analogue of surkhobite and perraultite. It is chemically related to bafertisite, cámaraite and emmerichite. Its structure is related to that of bafertisite. Jinshajiangite is a titanosilicate with heteropolyhedral HOH layers, where the H-layer is a mixed tetrahedral-octahedral layer, and the O-layer is simply octahedral.

Wiklundite is a rare and complex arsenite-silicate mineral with the chemical formula Pb2(Mn2+,Zn)3(Fe3+,Mn2+)2(Mn2+,Mg)19(As3+O3)2(Si,As5+O4)6(OH)18Cl6. The mineral characterizes in a large c unit cell parameter. It was found in Långban, Sweden - a home for many rare and exotic minerals.

Lahnsteinite is a basic sulfate mineral first discovered in the Friedrichssegen Mine, Germany in a goethite cavity. Though found in goethite, the crystals of Lahnsteinite are few millimeters in size, and are tabular shaped. Lahnsteinite was the first mineral discovered in the Lahn Valley deposits. The empirical formula for lahnsteinite is (Zn3.3,Fe0.27,Cu0.11)3.91(S0.98O4)(OH)5*3H2.10O.

<span class="mw-page-title-main">Lamprophyllite</span> Ti-silicate mineral

Lamprophyllite is a rare, but widespread mineral Ti-silicate mineral usually found in intrusive agpasitic igneous rocks. Yellow, reddish brown, Vitreous, Pearly.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

<span class="mw-page-title-main">Fumarole mineral</span> Minerals which are deposited by fumarole exhalations

Fumarole minerals are minerals which are deposited by fumarole exhalations. They form when gases and compounds desublimate or precipitate out of condensates, forming mineral deposits. They are mostly associated with volcanoes following deposition from volcanic gas during an eruption or discharge from a volcanic vent or fumarole, but have been encountered on burning coal deposits as well. They can be black or multicoloured and are often unstable upon exposure to the atmosphere.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. doi:10.1180/mgm.2021.43. S2CID   235729616.
  2. Chukanov, Nikita V.; Aksenov, Sergey M.; Jančev, Simeon; Pekov, Igor V.; Göttlicher, Jörg; Polekhovsky, Yury S.; Rusakov, Vyacheslav S.; Nelyubina, Yuliya V.; Van, Konstantin V. (2016). "A new mineral species ferricoronadite, Pb[Mn6 4+(Fe3+, Mn3+)2]O16: Mineralogical characterization, crystal chemistry and physical properties". Physics and Chemistry of Minerals. 43 (7): 503–514. Bibcode:2016PCM....43..503C. doi:10.1007/s00269-016-0811-z. S2CID   102008890.