Ferroelasticity

Last updated
Left: An example free energy given by Landau's theory with two stable states. Transforming between states requires input energy which leads to hysteresis. Right: Example stress-strain hysteresis for a ferroelastic crystal. Wikiarticle Landau (1).png
Left: An example free energy given by Landau's theory with two stable states. Transforming between states requires input energy which leads to hysteresis. Right: Example stress-strain hysteresis for a ferroelastic crystal.

Ferroelasticity is a phenomenon in which a material may exhibit a spontaneous strain, and is the mechanical equivalent of ferroelectricity and ferromagnetism in the field of ferroics. A ferroelastic crystal has two or more stable orientational states in the absence of mechanical stress or electric field, i.e. remanent states, and can be reproducibly switched between the states by applying a stress or an electric field greater than some critical value. The application of opposite fields leads to Hysteresis as the system crosses back and forth across an energy barrier. This transition dissipates an energy equal to the area enclosed by the hysteresis loop. [1]

Contents

The transition of the crystal's parent structure to one of its stable ferroelastic strains is typically accompanied by a reduction in the crystal symmetry. [2] The spontaneous change in strain and crystal structure can be associated with a spontaneous change in other observable properties, such as birefringence, optical absorption, and polarizability. [3] [4] In compatible materials, Raman spectroscopy has been used to directly image ferroelastic switching in crystals. [5]

Landau theory has been used to accurately describe many ferroelastic phase transitions using strain as the Order parameter since nearly all ferroelastic transitions are second order. The free energy is formulated as an expansion in even powers of strain.

The shape memory effect and superelasticity are manifestations of ferroelasticity. Nitinol (nickel titanium), a common ferroelastic alloy, can display either superelasticity or the shape-memory effect at room temperature, depending on the nickel-to-titanium ratio.

Role in Transformation Toughening

Ferroelastic transitions can be used to toughen ceramics with the most notable example being Zirconia. A crack propagating through tetragonal zirconia opens up extra space, which allows the region around the crack to transform into the monoclinic phase, expanding as much as 3-4%. [6] This expansion causes a compressive stress ahead of the crack tip, requiring extra work in order to further propagate the crack. [7]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Ceramic</span> An inorganic, nonmetallic solid prepared by the action of heat

A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Zirconium dioxide</span> Chemical compound

Zirconium dioxide, sometimes known as zirconia, is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

The Rayleigh law describes the behavior of ferromagnetic materials at low fields.

In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, and muscle wire. The "memorized geometry" can be modified by fixating the desired geometry and subjecting it to a thermal treatment, for example a wire can be taught to memorize the shape of a coil spring.

<span class="mw-page-title-main">Brittleness</span> Liability of breakage from stress without significant plastic deformation

A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied by a sharp snapping sound.

<span class="mw-page-title-main">Crystal twinning</span> Two separate crystals sharing some of the same crystal lattice points in a symmetrical manner

Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane.

<span class="mw-page-title-main">Orthodontic archwire</span> Wire used in dental braces

An archwire in orthodontics is a wire conforming to the alveolar or dental arch that can be used with dental braces as a source of force in correcting irregularities in the position of the teeth. An archwire can also be used to maintain existing dental positions; in this case it has a retentive purpose.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

In physics, ferroics is the generic name given to the study of ferromagnets, ferroelectrics, and ferroelastics.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

<span class="mw-page-title-main">Thermal barrier coating</span> Form of exhaust heat management

Thermal barrier coatings (TBCs) are advanced materials systems usually applied to metallic surfaces on parts operating at elevated temperatures, such as gas turbine combustors and turbines, and in automotive exhaust heat management. These 100 μm to 2 mm thick coatings of thermally insulating materials serve to insulate components from large and prolonged heat loads and can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface. In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue. In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications. Due to increasing demand for more efficient engines running at higher temperatures with better durability/lifetime and thinner coatings to reduce parasitic mass for rotating/moving components, there is significant motivation to develop new and advanced TBCs. The material requirements of TBCs are similar to those of heat shields, although in the latter application emissivity tends to be of greater importance.

Pseudoelasticity, sometimes called superelasticity, is an elastic (reversible) response to an applied stress, caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in shape-memory alloys.

<span class="mw-page-title-main">Nickel titanium</span> Alloy known for shape-memory effect

Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60.

<span class="mw-page-title-main">Volker Heine</span> New Zealand scientist

Volker Heine FRS is a New Zealand / British physicist. He is married to Daphne and they have three children. Volker Heine is considered a pioneer of theoretical and computational studies of the electronic structure of solids and liquids and the determination of physical properties derived from it.

Zirconia toughened alumina is a ceramic material comprising alumina and zirconia. It is a composite ceramic material with zirconia grains in the alumina matrix.

The R-phase is a phase found in nitinol, a shape-memory alloy. It is a martensitic phase in nature, but is not the martensite that is responsible for the shape memory and superelastic effect.

<span class="mw-page-title-main">Abnormal grain growth</span>

Abnormal or discontinuous grain growth, also referred to as exaggerated or secondary recrystallisation grain growth, is a grain growth phenomenon in which certain energetically favorable grains (crystallites) grow rapidly in a matrix of finer grains, resulting in a bimodal grain-size distribution.

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

<span class="mw-page-title-main">Katherine Faber</span> American materials scientist

Katherine T. Faber is an American materials scientist and one of the world's foremost experts in ceramic engineering, material strengthening, and ultra-high temperature materials. Faber is the Simon Ramo Professor of Materials Science at the California Institute of Technology (Caltech). She was previously the Walter P. Murphy Professor and department chair of Materials Science and Engineering at the McCormick School of Engineering and Applied Science at Northwestern University.

References

  1. Banerjee, Rajat; Manna, Indranil (2013). Ceramic nanocomposites. Woodhead publishing series in composites science and engineering. Oxford: Woodhead publ. ISBN   978-0-85709-338-7.
  2. Salje, Ekhard K. H.; Hayward, Stuart A.; Lee, William T. (2005-01-01). "Ferroelastic phase transitions: structure and microstructure". Acta Crystallographica Section A. 61 (1): 3–18. doi: 10.1107/S0108767304020318 . ISSN   0108-7673. PMID   15613749.
  3. Wood, I G (1984-07-30). "Spontaneous birefringence of ferroelastic BiVO 4 and LaNBO 4 between 10K and T c". Journal of Physics C: Solid State Physics. 17 (21): L539–L543. doi:10.1088/0022-3719/17/21/003. ISSN   0022-3719.
  4. Hill, Christina; Weber, Mads C.; Lehmann, Jannis; Leinen, Tariq; Fiebig, Manfred; Kreisel, Jens; Guennou, Mael (2020-08-01). "Role of the ferroelastic strain in the optical absorption of BiVO4". APL Materials. 8 (8). arXiv: 2004.10183 . doi:10.1063/5.0011507. ISSN   2166-532X.
  5. Schubert, Amanda B.; Wellman, Richard; Nicholls, John; Gentleman, Molly M. (March 2016). "Direct observations of erosion-induced ferroelasticity in EB-PVD thermal barrier coatings". Journal of Materials Science. 51 (6): 3136–3145. Bibcode:2016JMatS..51.3136S. doi:10.1007/s10853-015-9623-7. ISSN   0022-2461.
  6. Žmak, Irena; Ćorić, Danko; Mandić, Vilko; Ćurković, Lidija (2019-12-26). "Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics". Materials. 13 (1): 122. Bibcode:2019Mate...13..122Z. doi: 10.3390/ma13010122 . ISSN   1996-1944. PMC   6981786 . PMID   31888013.
  7. Jiang, Wentao; Lu, Hao; Chen, Jinghong; Liu, Xuemei; Liu, Chao; Song, Xiaoyan (2021-04-01). "Toughening cemented carbides by phase transformation of zirconia". Materials & Design. 202: 109559. doi: 10.1016/j.matdes.2021.109559 . ISSN   0264-1275.