Fibrillogenesis

Last updated

Fibrillogenesis is the development of fine fibrils normally present in collagen fibers of connective tissue. It is derived from the Greek fibrillo (meaning fibrils, or pertaining to fibrils) and genesis (to create, the process by which something is created).

Contents

The assembly of collagen fibrils, fibrillogenesis appears to be a self-assembly process although there is much speculation about the specifics of the mechanism through which the body produces collagen fibrils. [1] In the body, collagen fibrils are composed of several types of collagen as well as macromolecules. Type I collagen is the most abundant structural macromolecule within the vertebrate body and also represents the most abundant collagen found within various collagen fibrils [2] There are immense differences in the types of collagen fibrils that exist within the body. For instance, fibrils within the tendon vary in width and are banded into aggregates that form fibril bundles that resist forces of tension within one dimension. Similarly, fibrils that form the translucent corneal stromal matrix form orthogonal sheets and withstand the force of traction in two dimensions. These two structurally different collagen fibrils are speculated to be formed from the same molecules with type I collagen being the primary collagen found within both structures. [2]

Synthesis

There is no concrete evidence or agreement on the exact mechanisms of fibrillogenesis, however, multiple hypotheses based on primary research have put forth various mechanisms to consider. Collagen fibrillogenesis occurs in the plasma membrane during embryonic development. Collagen within the body has a denaturation temperature between 32-40 degrees Celsius, the physiological temperature also falls within this range and thereby poses a significant problem. [3] It is not known how collagen survives within the tissues in order to yield itself to the formation of collagen fibrils. A postulated solution to the problem of denaturation, is that newly formed collagen gets stored in vacuoles. The storage vacuoles also contain molecular aggregates that provide the required thermal stability to allow for fibrillogenesis to occur within the body. [3] In the body, fibrillar collagens have over 50 known binding partners. [1] The cell accounts for the variety of binding partners through the localization of the fibrillogenesis process to the plasma membrane in order to maintain control of which molecules bind to each other and further ensure both fibril diversity and assemblies of certain collagen fibrils in different tissues [1] Kader, Hill, and Canty-Larid published a plausible mechanism for the formation of collagen fibrils. Fibronectin a glycoprotein that binds to receptor proteins known as integrins within the cytoskeleton is a key player in the hypothesized method of fibrillogenesis. The interaction between fibronectin and the integrin receptor causes a conformational change in the fibronectin. Additional receptors bind to fibronectin bringing in type I collagen, procollagen I and collagen V. These molecules interact with fibronectin to promote fibril formation on the surface of the cell. [1]

Regulation

Based on research using mice and studies of Ehlers-Danlos syndromes (EDS), which is characterized by hypermobility of the joints, and high levels of skin laxity, researcher found that tenascin X expression levels correlated with the number of present collagen fibrils. In humans, tenascin X is associated with EDS. Through their research, researcher confounded the original hypothesis that tenascin X interfered with collagen fibrillogenesis and suggest that it acts rather as a regulator of collagen fibrillogenesis. Data suggest tenascin is a regulator of collagen fibril spacing. In vitro tests yield evidence that suggest tenascin X accelerates collagen fibril formation through an additive mechanism when collagen VI is present. [1] In addition to tenascin X, multiple proteins, glycoconjugates, and small molecules have shown to influence not only the rate of collagen fibrillogenesis, but also the structure of collagen fibrils as well as their size in lab studies.

Turbidity tests

Fibrillogenesis can be analyzed through the use of turbidity tests. [4] Turbidity is way of measuring the haziness, cloudiness, or fogginess of sample and also can be used to test the light-scattering properties of said sample. A turbidity test on fibrillogenesis will start with a sample of collagen triple-helices, which will have a low-level of turbidity. After fibrillogenesis is completed, the triple-helices will have formed fibrils. A sample of fibrils will have a high-level of turbidity when compared to that of a sample of triple-helices. As fibrillogenesis is taking place, there is a change in the light-scattering properties of the sample over time, which can be measured with a spectrophotometer. The wavelength typically used to measure fibrillogenesis with a spectrophotometer ranges from 310nm to 313nm. Turbidity tests done on type I collagen triple-helices will display a sigmoidal curve when plotted on a graph. [4] The sigmoidal curve is divided into three phases; lag phase, growth phase, and plateau phase. [5]

Clinical significance

A better understanding of the mechanisms of collagen fibrillogenesis as well as an understanding of the regulators of the process would allow for a better understanding of diseases that affect collagen fibril formation and assembly such as Ehlers-Danlos syndromes (EDS). On a broader spectrum, an understanding of the processes that lie behind fibrillogenesis would allow for great advancements in the field of regenerative medicine. A greater understanding would lead to a potential future in which organs and tissue damaged through trauma could be regenerated using the basis of collagen fibrillogenesis.

Related Research Articles

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin.

Integrin

Integrins are transmembrane receptors that facilitate cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

Tendon type of tissue that connects muscle to bone

A tendon or sinew is a tough band of fibrous connective tissue that connects muscle to bone and is capable of withstanding tension.

Fibronectin

Fibronectin is a high-molecular weight (~440kDa) glycoprotein of the extracellular matrix that binds to membrane-spanning receptor proteins called integrins. Fibronectin also binds to other extracellular matrix proteins such as collagen, fibrin, and heparan sulfate proteoglycans.

Extracellular matrix Network of proteins and molecules outside cells that provides structural support for cells

In biology, the extracellular matrix (ECM) is a three-dimensional network of extracellular macromolecules, such as collagen, enzymes, and glycoproteins, that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

In biology, matrix is the material in between a eukaryotic organism's cells.

Basement membrane A thin fibrous layer between the cells and the adjacent connective tissue in animals

The basement membrane is a thin, pliable sheet-like type of extracellular matrix, that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tissues including mesothelium and endothelium, and the underlying connective tissue.

Cell adhesion molecules (CAMs) are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix (ECM) in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in creating force and movement and consequently ensure that organs are able to execute their functions. In addition to serving as "molecular glue", cell adhesion is important in affecting cellular mechanisms of growth, contact inhibition, and apoptosis. Oftentimes aberrant expression of CAMs will result in pathologies ranging from frostbite to cancer.

Fibril

Fibrils are structural biological materials found in nearly all living organisms. Not to be confused with fibers or filaments, fibrils tend to have diameters ranging from 10-100 nanometers. Fibrils are not usually found alone but rather are parts of greater hierarchical structures commonly found in biological systems. Due to the prevalence of fibrils in biological systems, their study is of great importance in the fields of microbiology, biomechanics, and materials science.

ADAMTS2

A disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAM-TS2) also known as procollagen I N-proteinase is an enzyme that in humans is encoded by the ADAMTS2 gene.

Collagen, type I, alpha 1

Collagen, type I, alpha 1, also known as alpha-1 type I collagen, is a protein that in humans is encoded by the COL1A1 gene. COL1A1 encodes the major component of type I collagen, the fibrillar collagen found in most connective tissues, including cartilage.

Collagen, type III, alpha 1

Type III Collagen is a homotrimer, or a protein composed of three identical peptide chains (monomers), each called an alpha 1 chain of type III collagen. Formally, the monomers are called collagen type III, alpha-1 chain and in humans are encoded by the COL3A1 gene. Type III collagen is one of the fibrillar collagens whose proteins have a long, inflexible, triple-helical domain.

Tenascin

Tenascins are extracellular matrix glycoproteins. They are abundant in the extracellular matrix of developing vertebrate embryos and they reappear around healing wounds and in the stroma of some tumors.

The mesohyl, formerly known as mesenchyme or as mesoglea, is the gelatinous matrix within a sponge. It fills the space between the external pinacoderm and the internal choanoderm. The mesohyl resembles a type of connective tissue and contains several amoeboid cells such as amebocytes, as well as fibrils and skeletal elements. For a long time, it has been largely accepted that sponges lack true tissue, but it is currently debated as to whether mesohyl and pinacoderm layers are tissues.

Type I collagen is the most abundant collagen of the human body. It forms large, eosinophilic fibers known as collagen fibers. It is present in scar tissue, the end product when tissue heals by repair, as well as tendons, ligaments, the endomysium of myofibrils, the organic part of bone, the dermis, the dentin, and organ capsules.

Collagen, type V, alpha 1

Collagen alpha-1(V) chain is a protein that in humans is encoded by the COL5A1 gene.

Tenascin C

Tenascin C (TN-C) is a glycoprotein that in humans is encoded by the TNC gene. It is expressed in the extracellular matrix of various tissues during development, disease or injury, and in restricted neurogenic areas of the central nervous system. Tenascin-C is the founding member of the tenascin protein family. In the embryo it is made by migrating cells like the neural crest; it is also abundant in developing tendons, bone and cartilage.

Collagen, type V, alpha 3

Collagen alpha-3(V) chain is a protein that in humans is encoded by the COL5A3 gene.

Dermatopontin

Dermatopontin also known as tyrosine-rich acidic matrix protein (TRAMP) is a protein that in humans is encoded by the DPT gene. Dermatopontin is a 22-kDa protein of the noncollagenous extracellular matrix (ECM) estimated to comprise 12 mg/kg of wet dermis weight. To date, homologues have been identified in five different mammals and 12 different invertebrates with multiple functions. In vertebrates, the primary function of dermatopontin is a structural component of the ECM, cell adhesion, modulation of TGF-β activity and cellular quiescence). It also has pathological involvement in heart attacks and decreased expression in leiomyoma and fibrosis. In invertebrate, dermatopontin homologue plays a role in hemagglutination, cell-cell aggregation, and expression during parasite infection.

Feline cutaneous asthenia is a rare inheritable skin disease of cats characterised by abnormal elasticity, stretching, and improper healing of the skin. Pendulous wing-like folds of skin form on the cat's back, shoulders and haunches. Even stroking the cat can cause the skin to stretch and tear. A recessive autosomal form of feline cutaneous asthenia has been identified in Siamese cats and related breeds. In the homozygous state, it is apparently lethal. Feline cutaneous asthenia is similar to the Ehlers–Danlos syndrome of humans.

References

  1. 1 2 3 4 5 Kader, Karl (2008). "Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators". Current Opinion in Cell Biology. 20 (5–24): 495–501. doi:10.1016/j.ceb.2008.06.008. PMC   2577133 . PMID   18640274.
  2. 1 2 Hansen, Uwe; Peter Bruckner (July 2003). "Macromolecular Specificity of Collagen Fibrillogenesis". Journal of Biological Chemistry. 278 (39): 37352–37359. doi: 10.1074/jbc.M304325200 . PMID   12869566.
  3. 1 2 Trelstad, Robert; Kimiko Hayashi; Jerome Gross (July 19, 1976). "Collagen fibrillogenesis: Intermediate aggregates and suprafibrillar order". Proceedings of the National Academy of Sciences. 73 (11): 4027–4031. Bibcode:1976PNAS...73.4027T. doi:10.1073/pnas.73.11.4027. PMC   431312 . PMID   1069288.
  4. 1 2 Hansen, Uwe; Bruckner, Peter (2003-09-26). "Macromolecular Specificity of Collagen Fibrillogenesis FIBRILS OF COLLAGENS I AND XI CONTAIN A HETEROTYPIC ALLOYED CORE AND A COLLAGEN I SHEATH". Journal of Biological Chemistry. 278 (39): 37352–37359. doi: 10.1074/jbc.M304325200 . ISSN   0021-9258. PMID   12869566.
  5. Kadler, Karl E.; Holmes, David F.; Trotter, John A.; Chapman, John A. (1996-05-15). "Collagen fibril formation". Biochemical Journal. 316 (1): 1–11. doi:10.1042/bj3160001. ISSN   0264-6021. PMC   1217307 . PMID   8645190.