Finite topology

Last updated

Finite topology is a mathematical concept which has several different meanings.

Contents

Finite topological space

A finite topological space is a topological space, the underlying set of which is finite.

In endomorphism rings and modules

If A and B are abelian groups then the finite topology on the group of homomorphisms Hom(A, B) can be defined using the following base of open neighbourhoods of zero.[ citation needed ]

This concept finds applications especially in the study of endomorphism rings where we have A = B. [1] Similarly, if R is a ring and M is a right R-module, then the finite topology on is defined using the following system of neighborhoods of zero [2] :

In vector spaces

In a vector space , the finite open sets are defined as those sets whose intersections with all finite-dimensional subspaces are open. The finite topology on is defined by these open sets and is sometimes denoted . [3]

When V has uncountable dimension, this topology is not locally convex nor does it make V as topological vector space, but when V has countable dimension it coincides with both the finest vector space topology on V and the finest locally convex topology on V. [4]

In manifolds

A manifold M is sometimes said to have finite topology, or finite topological type, if it is homeomorphic to a compact Riemann surface from which a finite number of points have been removed. [5]

Notes

  1. Krylov 2002, p.4598–4735
  2. Abyazov and Maklakov 2023, p.74
  3. Kakutani and Klee 1963, p.55-58
  4. Pazzis 2018, p.2
  5. Hoffman and Karcher 1995, p.75

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

<span class="mw-page-title-main">Vector bundle</span> Mathematical parametrization of vector spaces by another space

In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed ; it is however necessary that the space on/in which the object is defined is a topological space, in order that the word local has some meaning.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite dimensional vector space over the reals or a p-adic field.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size”.

In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.

This is a glossary for the terminology in a mathematical field of functional analysis.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References