Fluorescence-activating and absorption-shifting tag

Last updated

FAST (Fluorescence-Activating and absorption-Shifting Tag) is a small, genetically-encoded, protein tag which allows for fluorescence reporting of proteins of interest. Unlike natural fluorescent proteins and derivates such as GFP or mCherry, FAST is not fluorescent by itself. It can bind selectively a fluorogenic chromophore derived from 4-hydroxybenzylidene rhodanine (HBR), which is itself non fluorescent unless bound. Once bound, the pair of molecules goes through a unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, hence providing high labeling selectivity. The FAST-fluorogen reporting system can be used in fluorescence microscopy, flow cytometry and any other fluorometric method to explore the living world: biosensors, protein trafficking.

Contents

FAST, a small 14 kDa protein, was engineered from the photoactive yellow protein (PYP) by directed evolution. It was reported for the first time in 2016 by researchers from Ecole normale supérieure de Paris. [1]

Mechanism

FAST pertains to a chemical-genetic strategy for specific labeling of proteins. A peptide domain, called "tag", is genetically encoded to be bound to a protein of interest (by combination of their respective genes by means of transfection or infection). This tag is the anchor for a synthetic fluorescent probe to be further added. [2] Such chemical-genetic approach was already implemented besides natural fluorescent proteins such as GFP or their derivatives such as mCherry in several systems already widely used:

Reversible binding between FAST and a fluorogene FAST fr.png
Reversible binding between FAST and a fluorogene

Several versions of FAST have been described differing by a small number of mutations, e.g., FAST1 (a.k.a. Y-FAST), FAST2 (a.k.a. iFAST), or a dimer, td-FAST. [3] Also, a complementation split version for monitoring protein-protein interactions was developed, splitFAST. [4] A number of plasmids displaying FAST or splitFAST genes are available at Addgene. [5]

Applications

The FAST-fluorogen reporting system is used in fluorescence microscopy, flow cytometry and any other fluorometric methods to explore the living world, including biosensors and protein trafficking. FAST has been reported for dynamic imaging of biofilms because of its unique capacity of fluorescence in low-oxygen conditions. [6] For the same reason it allows for imaging and FACSing anaerobes, such as Clostridium , used for biomass fermentatio like the ABE fermentation. [7] FAST has also been reported for super-resolution microscopy of living cells. [8]

A number of fluorogens were developed for FAST and its derivates by The Twinkle Factory, varying by their emission wavelength, their brightness and their tag affinity. Some are non permeant, i.e., they can't go through cell membranes, hence specifically labeling membrane proteins or extracellular proteins, allowing for, e.g., monitoring trafficking from synthesis until excretion. [9]

Related Research Articles

Fluorescence Emission of light by a substance that has absorbed light

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

Microscopy Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

Green fluorescent protein Protein that exhibits bright green fluorescence when exposed to ultraviolet light

The green fluorescent protein (GFP) is a protein that exhibits bright green fluorescence when exposed to light in the blue to ultraviolet range. The label GFP traditionally refers to the protein first isolated from the jellyfish Aequorea victoria and is sometimes called avGFP. However, GFPs have been found in other organisms including corals, sea anemones, zoanithids, copepods and lancelets.

Fluorescent tag

In molecular biology and biotechnology, a fluorescent tag, also known as a fluorescent label or fluorescent probe, is a molecule that is attached chemically to aid in the detection of a biomolecule such as a protein, antibody, or amino acid. Generally, fluorescent tagging, or labeling, uses a reactive derivative of a fluorescent molecule known as a fluorophore. The fluorophore selectively binds to a specific region or functional group on the target molecule and can be attached chemically or biologically. Various labeling techniques such as enzymatic labeling, protein labeling, and genetic labeling are widely utilized. Ethidium bromide, fluorescein and green fluorescent protein are common tags. The most commonly labelled molecules are antibodies, proteins, amino acids and peptides which are then used as specific probes for detection of a particular target.

Fluorophore Agents that emit light after excitation by light

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

Immunofluorescence Technique used for light microscopy

Immunofluorescence is a technique used for light microscopy with a fluorescence microscope and is used primarily on microbiological samples. This technique uses the specificity of antibodies to their antigen to target fluorescent dyes to specific biomolecule targets within a cell, and therefore allows visualization of the distribution of the target molecule through the sample. The specific region an antibody recognizes on an antigen is called an epitope. There have been efforts in epitope mapping since many antibodies can bind the same epitope and levels of binding between antibodies that recognize the same epitope can vary. Additionally, the binding of the fluorophore to the antibody itself cannot interfere with the immunological specificity of the antibody or the binding capacity of its antigen. Immunofluorescence is a widely used example of immunostaining and is a specific example of immunohistochemistry. This technique primarily makes use of fluorophores to visualise the location of the antibodies.

Förster resonance energy transfer

Förster or fluorescence resonance energy transfer (FRET), resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.

Fluorescence microscope

A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

Two-photon excitation microscopy

Two-photon excitation microscopy is a fluorescence imaging technique that allows imaging of living tissue up to about one millimeter in thickness, with 0.64 μm lateral and 3.35 μm axial spatial resolution. Unlike traditional fluorescence microscopy, in which the excitation wavelength is shorter than the emission wavelength, two-photon excitation requires simultaneous excitation by two photons with longer wavelength than the emitted light. Two-photon excitation microscopy typically uses near-infrared (NIR) excitation light which can also excite fluorescent dyes. However, for each excitation, two photons of NIR light are absorbed. Using infrared light minimizes scattering in the tissue. Due to the multiphoton absorption, the background signal is strongly suppressed. Both effects lead to an increased penetration depth for this technique. Two-photon excitation can be a superior alternative to confocal microscopy due to its deeper tissue penetration, efficient light detection, and reduced photobleaching.

Fluorescence Loss in Photobleaching (FLIP) is a fluorescence microscopy technique used to examine movement of molecules inside cells and membranes. A cell membrane is typically labeled with a fluorescent dye to allow for observation. A specific area of this labeled section is then bleached several times using the beam of a confocal laser scanning microscope. After each imagining scan, bleaching occurs again. This occurs several times, to ensure that all accessible fluorophores are bleached since unbleached fluorophores are exchanged for bleached fluorophores, causing movement through the cell membrane. The amount of fluorescence from that region is then measured over a period of time to determine the results of the photobleaching on the cell as a whole.

Jennifer Lippincott-Schwartz American biologist

Jennifer Lippincott-Schwartz is a Senior Group Leader at Howard Hughes Medical Institute's Janelia Research Campus and a founding member of the Neuronal Cell Biology Program at Janelia. Previously, she was the Chief of the Section on Organelle Biology in the Cell Biology and Metabolism Program, in the Division of Intramural Research in the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health from 1993 to 2016. Lippincott-Schwartz received her Ph.D. from Johns Hopkins University, and performed post-doctoral training with Dr. Richard Klausner at the NICHD, NIH in Bethesda, Maryland.

Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field or on the far-field. Among techniques that rely on the latter are those that improve the resolution only modestly beyond the diffraction-limit, such as confocal microscopy with closed pinhole or aided by computational methods such as deconvolution or detector-based pixel reassignment, the 4Pi microscope, and structured-illumination microscopy technologies such as SIM and SMI.

mCherry is a member of the mFruits family of monomeric red fluorescent proteins (mRFPs). As a RFP, mCherry was derived from DsRed of Discosoma sea anemones unlike green fluorescent proteins (GFPs) which are often derived from Aequoera victoria jellyfish. Fluorescent proteins are used to tag components in the cell, so they can be studied using fluorescence spectroscopy and fluorescence microscopy. mCherry absorbs light between 540-590 nm and emits light in the range of 550-650 nm. mCherry belongs to the group of fluorescent protein chromophores used as instruments to visualize genes and analyze their functions in experiments. Genome editing has been improved greatly through the precise insertion of these fluorescent protein tags into the genetic material of many diverse organisms. Most comparisons between the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that affect protein performance in cells or organisms. It is hard to perfectly simulate cellular environments in vitro, and the difference in environment could have an effect on the brightness and photostability.

Photo-activated localization microscopy and stochastic optical reconstruction microscopy (STORM) are widefield fluorescence microscopy imaging methods that allow obtaining images with a resolution beyond the diffraction limit. The methods were proposed in 2006 in the wake of a general emergence of optical super-resolution microscopy methods, and were featured as Methods of the Year for 2008 by the Nature Methods journal. The development of PALM as a targeted biophysical imaging method was largely prompted by the discovery of new species and the engineering of mutants of fluorescent proteins displaying a controllable photochromism, such as photo-activatible GFP. However, the concomitant development of STORM, sharing the same fundamental principle, originally made use of paired cyanine dyes. One molecule of the pair, when excited near its absorption maximum, serves to reactivate the other molecule to the fluorescent state.

SNAP-tag

SNAP-tag® is a self-labeling protein tag commercially available in various expression vectors. SNAP-tag is a 182 residues polypeptide that can be fused to any protein of interest and further specifically and covalently tagged with a suitable ligand, such as a fluorescent dye. Since its introduction, SNAP-tag has found numerous applications in biochemistry and for the investigation of the function and localisation of proteins and enzymes in living cells. Compared to the current standard labelling methods used in fluorescence microscopy, the use of SNAP-tag presents significant advantages. SNAP-tag® is a registered trademark of New England Biolabs, Inc.

FlAsH-EDT<sub>2</sub> Chemical compound

FlAsH-EDT2 is an organoarsenic compound with molecular formula C24H18As2O5S4. Its structure is based around a fluorescein core with two 1,3,2-dithiarsolane substituents. It is used in bioanalytical research as a fluorescent label for visualising proteins in living cells. FlAsH-EDT2 is an abbreviation for fluorescin arsenical hairpin binder-ethanedithiol, and is a pale yellow or pinkish fluorogenic solid. It has a semi-structural formula (C2H4AsS2)2-(C13H5O3)-C6H4COOH, representing the dithiarsolane substituents bound to the hydroxyxanthone core, attached to an o-substituted molecule of benzoic acid.

Calcium imaging is a microscopy technique to optically measure the calcium (Ca2+) status of an isolated cell, tissue or medium. Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca2+ ions by fluorescence properties. Two main classes of calcium indicators exist: chemical indicators and genetically encoded calcium indicators (GECI). This technique has allowed studies of calcium signalling in a wide variety of cell types. In neurons, electrical activity is always accompanied by an influx of Ca2+ ions. Thus, calcium imaging can be used to monitor the electrical activity in hundreds of neurons in cell culture or in living animals, which has made it possible to dissect the function of neuronal circuits.

SmURFP

Small ultra red fluorescent protein (smURFP) is a class of far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein, α-allophycocyanin. Native α-allophycocyanin requires an exogenous protein, known as a lyase, to attach the chromophore, phycocyanobilin. Phycocyanobilin is not present in mammalian cells. smURFP was evolved to covalently attach phycocyanobilin without a lyase and fluoresce, covalently attach biliverdin and fluoresce, blue-shift fluorescence to match the organic fluorophore, Cy5, and not inhibit E. coli growth. smURFP was found after 12 rounds of random mutagenesis and manually screening 10,000,000 bacterial colonies.

In molecular biology, the PYP domain is a p-coumaric acid-binding protein domain. They are present in various proteins in bacteria.

Fluorescence imaging Type of non-invasive imaging technique

Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy, imaging probes, and spectroscopy.

References

  1. Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine (2015-12-28). "Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo". Proceedings of the National Academy of Sciences. 113 (3): 497–502. doi:10.1073/pnas.1513094113. ISSN   0027-8424. PMC   4725535 . PMID   26711992.
  2. Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine (2016-01-19). "Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo". Proceedings of the National Academy of Sciences. 113 (3): 497–502. Bibcode:2016PNAS..113..497P. doi:10.1073/pnas.1513094113. ISSN   0027-8424. PMC   4725535 . PMID   26711992.
  3. Tebo, Alison G.; Pimenta, Frederico M.; Zhang, Yu; Gautier, Arnaud (2018-10-02). "Improved Chemical-Genetic Fluorescent Markers for Live Cell Microscopy" (PDF). Biochemistry. 57 (39): 5648–5653. doi:10.1021/acs.biochem.8b00649. ISSN   0006-2960. PMID   30204425.
  4. Tebo, Alison G.; Gautier, Arnaud (2019-08-14). "Author Correction: A split fluorescent reporter with rapid and reversible complementation". Nature Communications. 10 (1): 3730. Bibcode:2019NatCo..10.3730T. doi: 10.1038/s41467-019-11689-6 . ISSN   2041-1723. PMC   6694131 . PMID   31413330.
  5. "Addgene: Arnaud Gautier Lab Plasmids". www.addgene.org. Retrieved 2019-11-25.
  6. Monmeyran, Amaury; Thomen, Philippe; Jonquière, Hugo; Sureau, Franck; Li, Chenge; Plamont, Marie-Aude; Douarche, Carine; Casella, Jean-François; Gautier, Arnaud; Henry, Nelly (2018-07-09). "The inducible chemical-genetic fluorescent marker FAST outperforms classical fluorescent proteins in the quantitative reporting of bacterial biofilm dynamics". Scientific Reports. 8 (1): 10336. Bibcode:2018NatSR...810336M. doi: 10.1038/s41598-018-28643-z . ISSN   2045-2322. PMC   6037777 . PMID   29985417.
  7. Charubin, Kamil; Bennett, R. Kyle; Fast, Alan G.; Papoutsakis, Eleftherios T. (Nov 2018). "Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities". Metabolic Engineering. 50: 173–191. doi: 10.1016/j.ymben.2018.07.012 . ISSN   1096-7176. PMID   30055325.
  8. Venkatachalapathy, Muthukumaran; Belapurkar, Vivek; Jose, Mini; Gautier, Arnaud; Nair, Deepak (2019). "Live cell super resolution imaging by radial fluctuations using fluorogen binding tags". Nanoscale. 11 (8): 3626–3632. doi:10.1039/c8nr07809b. ISSN   2040-3364. PMID   30734810.
  9. Li, Chenge; Mourton, Aurélien; Plamont, Marie-Aude; Rodrigues, Vanessa; Aujard, Isabelle; Volovitch, Michel; Le Saux, Thomas; Perez, Franck; Vriz, Sophie; Jullien, Ludovic; Joliot, Alain (2018-06-20). "Fluorogenic Probing of Membrane Protein Trafficking" (PDF). Bioconjugate Chemistry. 29 (6): 1823–1828. doi:10.1021/acs.bioconjchem.8b00180. ISSN   1043-1802. PMID   29791141.