Flying qualities is one of the three principal regimes in the science of flight test, which also includes performance and systems. [1] Flying qualities involves the study and evaluation of the stability and control characteristics of an aircraft. They have a critical bearing on the safety of flight and on the ease of controlling an airplane in steady flight and in maneuvers.
To understand the discipline of flying qualities, the concept of stability should be understood. Stability can be defined only when the vehicle is in trim; that is, there are no unbalanced forces or moments acting on the vehicle to cause it to deviate from steady flight. If this condition exists, and if the vehicle is disturbed, stability refers to the tendency of the vehicle to return to the trimmed condition. If the vehicle initially tends to return to a trimmed condition, it is said to be statically stable. If it continues to approach the trimmed condition without overshooting, the motion is called a subsidence. If the motion causes the vehicle to overshoot the trimmed condition, it may oscillate back and forth. If this oscillation damps out, the motion is called a damped oscillation and the vehicle is said to be dynamically stable. On the other hand, if the motion increases in amplitude, the vehicle is said to be dynamically unstable.
The theory of stability of airplanes was worked out by G. H. Bryan in England in 1904. This theory is essentially equivalent to the theory taught to aeronautical students today and was a remarkable intellectual achievement considering that at the time Bryan developed the theory, he had not even heard of the Wright brothers' first flight. Because of the complication of the theory and the tedious computations required in its use, it was rarely applied by airplane designers. Obviously, to fly successfully, pilotless airplanes had to be dynamically stable. The airplane flown by the Wright brothers, and most airplanes flown thereafter, were not stable, but by trial and error, designers developed a few planes that had satisfactory flying qualities. Many other airplanes, however, had poor flying qualities, which sometimes resulted in crashes.
Handling qualities are those characteristics of a flight vehicle that govern the ease and precision with which a pilot is able to perform a flying task. [2] This includes the human-machine interface. The way in which particular vehicle factors affect flying qualities has been studied in aircraft for decades, [3] and reference standards for the flying qualities of both fixed-wing aircraft [4] and rotary-wing aircraft [5] have been developed and are now in common use. These standards define a subset of the dynamics and control design space that provides good handling qualities for a given vehicle type and flying task.
Bryan showed that the stability characteristics of airplanes could be separated into longitudinal and lateral groups with the corresponding motions called modes of motion. These modes of motion were either aperiodic, which means that the airplane steadily approaches or diverges from a trimmed condition, or oscillatory, which means that the airplane oscillates about the trim condition. The longitudinal modes of a statically stable airplane following a disturbance were shown to consist of a long-period oscillation called the phugoid oscillation, usually with a period in seconds about one-quarter of the airspeed in miles per hour and a short-period oscillation with a period of only a few seconds. The lateral motion had three modes of motion: an aperiodic mode called the spiral mode that could be a divergence or subsidence, a heavily damped aperiodic mode called the roll subsidence, and a short-period oscillation, usually poorly damped, called the Dutch roll mode.
Some early airplane designers attempted to make airplanes that were dynamically stable, but it was found that the requirements for stability conflicted with those for satisfactory flying qualities. Meanwhile, no information was available to guide the designer as to just what characteristics should be incorporated to provide satisfactory flying qualities.
By the 1930s, there was a general feeling that airplanes should be dynamically stable, but some aeronautical engineers were starting to recognize the conflict between the requirements for stability and flying qualities. To resolve this question, Edward Warner, who was working as a consultant to the Douglas Aircraft Company on the design of the DC-4, a large four-engine transport airplane, made the first effort in the United States to write a set of requirements for satisfactory flying qualities. Dr. Warner, a member of the main committee of the NACA, also requested that a flight study be made to determine the flying qualities of an airplane along the lines of the suggested requirements. This study was conducted by Hartley A. Soulé of Langley. Entitled Preliminary Investigation of the Flying Qualities of Airplanes, Soulé's report showed several areas in which the suggested requirements needed revision and showed the need for more research on other types of airplanes. [6] As a result, a program was started by Robert R. Gilruth with Melvin N. Gough as the chief test pilot.
The technique for the study of flying qualities requirements used by Gilruth was first to install instruments to record relevant quantities such as control positions and forces, airplane angular velocities, linear accelerations, airspeed, and altitude. Then a program of specified flight conditions and maneuvers was flown by an experienced test pilot. After the flight, data were transcribed from the records and the results were correlated with pilot opinion. This approach would be considered routine today, but it was a notable original contribution by Gilruth that took advantage of the flight recording instruments already available at Langley and the variety of airplanes available for tests under comparable conditions.
An important quantity in flying qualities measurements in turns or pull-ups is the variation of control force on the control stick or wheel with the value of acceleration normal to the flight direction expressed in g units. This quantity is usually called the force per g.
A new generation of spacecraft now under development by NASA to replace the Space Shuttle and return astronauts to the Moon will have a manual control capability for several mission tasks, and the ease and precision with which pilots can execute these tasks will have an important effect on performance, mission risk and training costs.[ citation needed ] No reference standards currently exist for flying qualities of piloted spacecraft.
A tailplane, also known as a horizontal stabiliser, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplanes. Not all fixed-wing aircraft have tailplanes. Canards, tailless and flying wing aircraft have no separate tailplane, while in V-tail aircraft the vertical stabiliser, rudder, and the tail-plane and elevator are combined to form two diagonal surfaces in a V layout.
Aeroelasticity is the branch of physics and engineering studying the interactions between the inertial, elastic, and aerodynamic forces occurring while an elastic body is exposed to a fluid flow. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity dealing with the static or steady state response of an elastic body to a fluid flow, and dynamic aeroelasticity dealing with the body's dynamic response.
In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack increases. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil, and Reynolds number.
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.
Robert Rowe Gilruth was an American aerospace engineer and an aviation/space pioneer who was the first director of NASA's Manned Spacecraft Center, later renamed the Lyndon B. Johnson Space Center.
An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations.
In aeronautics, dihedral is the angle between the left and right wings of an aircraft. "Dihedral" is also used to describe the effect of sideslip on the rolling of the aircraft.
In aviation, an aircraft is said to have relaxed stability if it has low or negative stability.
Robert T. Jones,, was an aerodynamicist and aeronautical engineer for NACA and later NASA. He was known at NASA as "one of the premier aeronautical engineers of the twentieth century". The papers of Robert T. Jones are in the Stanford University Libraries archives.
A stabilator is a fully movable aircraft horizontal stabilizer. It serves the usual functions of longitudinal stability, control and stick force requirements otherwise performed by the separate parts of a conventional horizontal stabilizer and elevator. Apart from reduced drag, particularly at high Mach numbers, it is a useful device for changing the aircraft balance within wide limits, and for reducing stick forces.
Dutch roll is a type of aircraft motion consisting of an out-of-phase combination of "tail-wagging" (yaw) and rocking from side to side (roll). This yaw-roll coupling is one of the basic flight dynamic modes. This motion is normally well damped in most light aircraft, though some aircraft with well-damped Dutch roll modes can experience a degradation in damping as airspeed decreases and altitude increases. Dutch roll stability can be artificially increased by the installation of a yaw damper. Wings placed well above the center of gravity, sweepback and dihedral wings tend to increase the roll restoring force, and therefore increase the Dutch roll tendencies; this is why high-winged aircraft often are slightly anhedral, and transport-category swept-wing aircraft are equipped with yaw dampers. A similar phenomenon can happen in a trailer pulled by a car.
In aviation, a phugoid or fugoid is an aircraft motion in which the vehicle pitches up and climbs, and then pitches down and descends, accompanied by speeding up and slowing down as it goes "downhill" and "uphill". This is one of the basic flight dynamics modes of an aircraft, and is a classic example of a positive feedback system.
An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.
The dynamic stability of an aircraft refers to how the aircraft behaves after it has been disturbed following steady non-oscillating flight.
Directional stability is stability of a moving body or vehicle about an axis which is perpendicular to its direction of motion. Stability of a vehicle concerns itself with the tendency of a vehicle to return to its original direction in relation to the oncoming medium when disturbed (rotated) away from that original direction. If a vehicle is directionally stable, a restoring moment is produced which is in a direction opposite to the rotational disturbance. This "pushes" the vehicle so as to return it to the original orientation, thus tending to keep the vehicle oriented in the original direction.
A yaw damper is a system used to reduce the undesirable tendencies of an aircraft to oscillate in a repetitive rolling and yawing motion, a phenomenon known as the Dutch roll. A large number of modern aircraft, both jet-powered and propeller-driven, have been furnished with such systems.
Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.
In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. Canard wings are also extensively used in guided missiles and smart bombs.
In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength.
Deflected slipstream is an approach to creating an aircraft that can take off and land vertically (VTOL), or at least with a very short runway (STOL). The basic principle is to deflect the slipstream from one or more propellers approximately 90 degrees, to create an upward thrust for vertical takeoff and a downward air cushion for landing. Once airborne, the flaps are retracted so the airplane can fly horizontally.