Foam fractionation

Last updated

Foam fractionation is a chemical process in which hydrophobic molecules are preferentially separated from a liquid solution using rising columns of foam. It is commonly used, albeit on a small scale, for the removal of organic waste from aquariums; these units are known as "protein skimmers". However it has much broader application in the chemical process industry and can be used for the removal of surface active contaminants from waste water streams in addition to the enrichment of bio-products.

Contents

History

Whilst protein skimmers have been common place in aquaria for many years, it was not until the 1960s that a concerted effort was made by Robert Lemlich of the University of Cincinnati [1] [2] to characterise a model of adsorptive bubble separation processes, of which foam fractionation is one example. Until the mid-2000s, there was very little further development of foam fractionation or attempts to understand the underlying physics of the process. Many workers were satisfied with empirical descriptions of specific systems rather than attempt a mechanistic model of the process, and it is possibly for this reason that the adoption of the technology has been slow despite its enormous potential.

Foam fractionation is closely related to the allied process of froth flotation in which hydrophobic particles attach to the surface of bubbles which rise to form a pneumatic (i.e. rising) foam. In this way, relatively hydrophobic particles can be separated from relatively hydrophilic particles. Froth flotation is typically used to separate coal particles from ash or particles of valuable minerals from gangue material. It was research into the froth phase of froth flotation conducted at the University of Newcastle, Australia, specifically into the prediction of liquid fraction and liquid flux in a pneumatic foam, that enabled a preliminary mechanistic description of foam fractionation. [3] The synergies between foam fractionation and froth flotation have been explored in a 2009 special issue of the Asia Pacific Journal of Chemical Engineering.

Design considerations

Robert Lemlich showed how foam fractionation columns can be operated in stripping, enriching, or combined modes (depending on whether the feed is sent to the top, bottom or middle of the column), and can be operated with or without an external reflux stream at the top of the column. It helps to think of the process as similar to a gas-liquid absorption column. The differences are that:

  1. The target molecules adsorb to a surface, rather than absorb by travelling into the bulk of one phase from another, and
  2. The foam autogenously provides the packing within the column.

Just as in gas-liquid absorption, the adoption of reflux at the top of the column can engender multiple equilibrium stages within the column. However, if one can control the rate at which the bubble size changes with height in the column, either by coalescence or Ostwald ripening, one can engineer an internal source of reflux within the column.

As in many chemical processes, there are competing considerations of recovery (i.e. the percentage of target surfactant that reports to the overhead foamate stream) and enrichment (i.e. the ratio of surfactant concentration in the foamate to the concentration in the feed). A crude method of moving upon the enrichment-recovery spectrum is to control the gas rate to the column. A higher gas rate will mean higher recovery but lower enrichment.

Foam fractionation proceeds via two mechanisms:

  1. The target molecule adsorbs to a bubble surface, and
  2. The bubbles form a foam which travels up a column and is discharged to the foamate stream of foam fractionation.

The rate at which certain non-ionic molecules can adsorb to bubble surface can be estimated by solving the Ward-Tordai equation. [4] The enrichment and recovery depend on the hydrodynamic condition of the rising foam, which is a complex system dependent upon bubble size distribution, stress state at the gas-liquid interface, rate of bubble coalescence, gas rate inter alia. The hydrodynamic condition is described by the Hydrodynamic Theory of Rising Foam. [5]

Applications

  1. Enrichment of the solutions of biomolecules in pharmaceutical and food technologies.
  2. Stripping of surface-active contaminants from streams of waste water.
  3. Stripping of non-surface-active contaminants from streams of waste water (such as metal ions) with the help of one or more assistant surfactants.
  4. The removal of frother downstream of froth flotation operations (known as frother stripping).

Notes

  1. Lemlich R, Lavi E 1961 Foam fractionation with reflux, Science134, p.191
  2. Lemlich R 1968 Adsorptive bubble separation techniques: Foam fractionation and allied techniques, Industrial & Engineering Chemistry60 p.16
  3. Stevenson P, Jameson GJ 2007 Modeling continuous foam fractionation with reflux, Chemical Engineering and Processing39, p.590
  4. Ward AFH & Tordai L 1946 Time-Dependence of boundary tension of solutions I. the role of diffusion in time-effects, Journal of Chemical Physics14, p.453
  5. Stevenson P 2007 Hydrodynamic theory of rising foam, Minerals Engineering20, p.282

Related Research Articles

Chromatography is a laboratory technique for the separation of a mixture. The mixture is dissolved in a fluid called the mobile phase, which carries it through a system on which is fixed a material called the stationary phase. The different constituents of the mixture have different affinities for the stationary phase. The different molecules stay longer or shorter on the stationary phase, depending on their interactions with its surface sites. So, they travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

Distillation Method of separating mixtures

Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation. Dry distillation is the heating of solid materials to produce gaseous products. Dry distillation may involve chemical changes such as destructive distillation or cracking and is not discussed under this article. Distillation may result in essentially complete separation, or it may be a partial separation that increases the concentration of selected components in the mixture. In either case, the process exploits differences in the relative volatility of the mixture's components. In industrial applications, distillation is a unit operation of practically universal importance, but it is a physical separation process, not a chemical reaction.

Surfactant Substance that lowers the surface tension between a liquid and another material

Surfactants are compounds that lower the surface tension between two liquids, between a gas and a liquid, or between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, or dispersants.

Foam Form of matter

Foam is an object formed by trapping pockets of gas in a liquid or solid.

Fractionating column

A fractionating column or fractional column is an essential item used in the distillation of liquid mixtures to separate the mixture into its component parts, or fractions, based on the differences in volatilities. Fractionating columns are used in small scale laboratory distillations as well as large scale industrial distillations.

Froth flotation

Froth flotation is a process for selectively separating hydrophobic materials from hydrophilic. This is used in mineral processing, paper recycling and waste-water treatment industries. Historically this was first used in the mining industry, where it was one of the great enabling technologies of the 20th century. It has been described as "the single most important operation used for the recovery and upgrading of sulfide ores". The development of froth flotation has improved the recovery of valuable minerals, such as copper- and lead-bearing minerals. Along with mechanized mining, it has allowed the economic recovery of valuable metals from much lower grade ore than previously.

Mineral processing Process of separating commercially valuable minerals from their ores

In the field of extractive metallurgy, mineral processing, also known as ore dressing, is the process of separating commercially valuable minerals from their ores.

Continuous distillation Form of distillation

Continuous distillation, a form of distillation, is an ongoing separation in which a mixture is continuously fed into the process and separated fractions are removed continuously as output streams. Distillation is the separation or partial separation of a liquid feed mixture into components or fractions by selective boiling and condensation. The process produces at least two output fractions. These fractions include at least one volatile distillate fraction, which has boiled and been separately captured as a vapor condensed to a liquid, and practically always a bottoms fraction, which is the least volatile residue that has not been separately captured as a condensed vapor.

Dissolved air flotation (DAF) is a water treatment process that clarifies wastewaters by the removal of suspended matter such as oil or solids. The removal is achieved by dissolving air in the water or wastewater under pressure and then releasing the air at atmospheric pressure in a flotation tank basin. The released air forms tiny bubbles which adhere to the suspended matter causing the suspended matter to float to the surface of the water where it may then be removed by a skimming device.

Reversed-phase chromatography includes any chromatographic method that uses a hydrophobic stationary phase. RPC refers to liquid chromatography.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

Defoamer Chemical additive that reduces and hinders the formation of foam in liquids

A defoamer or an anti-foaming agent is a chemical additive that reduces and hinders the formation of foam in industrial process liquids. The terms anti-foam agent and defoamer are often used interchangeably. Strictly speaking, defoamers eliminate existing foam and anti-foamers prevent the formation of further foam. Commonly used agents are insoluble oils, polydimethylsiloxanes and other silicones, certain alcohols, stearates and glycols. The additive is used to prevent formation of foam or is added to break a foam already formed.

Deinking is the industrial process of removing printing ink from paperfibers of recycled paper to make deinked pulp.

Foam separation is a chemical process which falls into a category of separation techniques called "Adsorptive bubble separation methods". It is further divided into froth flotation and foam fractionation.

Sea foam Foam created by the agitation of seawater

Sea foam, ocean foam, beach foam, or spume is a type of foam created by the agitation of seawater, particularly when it contains higher concentrations of dissolved organic matter derived from sources such as the offshore breakdown of algal blooms. These compounds can act as surfactants or foaming agents. As the seawater is churned by breaking waves in the surf zone adjacent to the shore, the surfactants under these turbulent conditions trap air, forming persistent bubbles that stick to each other through surface tension. Sea foam is a global phenomenon and it varies depending on location and the potential influence of the surrounding marine, freshwater, and/or terrestrial environments. Due to its low density and persistence, foam can be blown by strong on-shore winds from the beach face inland. Sea foam can also occur after a ship sinks completely

Bubble column reactor

A bubble column reactor is an apparatus used to generate and control gas-liquid chemical reactions. It consists of a vertically-arranged cylindrical column filled with liquid, at the bottom of which gas is inserted.

Adsorption of polyelectrolytes on solid substrates is a surface phenomenon where long-chained polymer molecules with charged groups bind to a surface that is charged in the opposite polarity. On the molecular level, the polymers do not actually bond to the surface, but tend to "stick" to the surface via intermolecular forces and the charges created by the dissociation of various side groups of the polymer. Because the polymer molecules are so long, they have a large amount of surface area with which to contact the surface and thus do not desorb as small molecules are likely to do. This means that adsorbed layers of polyelectrolytes form a very durable coating. Due to this important characteristic of polyelectrolyte layers they are used extensively in industry as flocculants, for solubilization, as supersorbers, antistatic agents, as oil recovery aids, as gelling aids in nutrition, additives in concrete, or for blood compatibility enhancement to name a few.

A separation process is a method that converts a mixture or solution of chemical substances into two or more distinct product mixtures. At least one of results of the separation is enriched in one or more of the source mixture's constituents. In some cases, a separation may fully divide the mixture into pure constituents. Separations exploit differences in chemical properties or physical properties between the constituents of a mixture.

Continuous foam separation is a chemical process closely related to foam fractionation in which foam is used to separate components of a solution when they differ in surface activity. In any solution, surface active components tend to adsorb to gas-liquid interfaces while surface inactive components stay within the bulk solution. When a solution is foamed, the most surface active components collect in the foam and the foam can be easily extracted. This process is commonly used in large-scale projects such as water waste treatment due to a continuous gas flow in the solution.

Jameson cell Machinery for processing minerals

The Jameson Cell is a high-intensity froth flotation cell that was invented by Laureate Professor Graeme Jameson of the University of Newcastle (Australia) and developed in conjunction with Mount Isa Mines Limited.