In mathematics, there are a few topological spaces named after M. K. Fort, Jr.
Fort space [1] is defined by taking an infinite set X, with a particular point p in X, and declaring open the subsets A of X such that:
The subspace has the discrete topology and is open and dense in X. The space X is homeomorphic to the one-point compactification of an infinite discrete space.
Modified Fort space [2] is similar but has two particular points. So take an infinite set X with two distinct points p and q, and declare open the subsets A of X such that:
The space X is compact and T1, but not Hausdorff.
Fortissimo space [3] is defined by taking an uncountable set X, with a particular point p in X, and declaring open the subsets A of X such that:
The subspace has the discrete topology and is open and dense in X. The space X is not compact, but it is a Lindelöf space. It is obtained by taking an uncountable discrete space, adding one point and defining a topology such that the resulting space is Lindelöf and contains the original space as a dense subspace. Similarly to Fort space being the one-point compactification of an infinite discrete space, one can describe Fortissimo space as the one-point Lindelöfication [4] of an uncountable discrete space.
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.
In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space.
In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.
In mathematics, a topological space is said to be σ-compact if it is the union of countably many compact subspaces.
In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but is countable, then one says the set is cocountable.
The cocountable topology or countable complement topology on any set X consists of the empty set and all cocountable subsets of X, that is all sets whose complement in X is countable. It follows that the only closed subsets are X and the countable subsets of X. Symbolically, one writes the topology as
In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom in the definition of one or both terms, and others don't.
Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.
In mathematics, the particular point topology is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection
In topology, a branch of mathematics, an extension topology is a topology placed on the disjoint union of a topological space and another set. There are various types of extension topology, described in the sections below.
In mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let X be any non-empty set and p ∈ X. The collection
In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting of open connected sets.
In mathematics a topological space is called countably compact if every countable open cover has a finite subcover.
In mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in .
In mathematics, a topological space is said to be limit point compact or weakly countably compact if every infinite subset of has a limit point in This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.
In general topology, a branch of mathematics, the Appert topology, named for Antoine Appert (1934), is a topology on the set X = {1, 2, 3, ...} of positive integers. In the Appert topology, the open sets are those that do not contain 1, and those that asymptotically contain almost every positive integer. The space X with the Appert topology is called the Appert space.