Forward measure

Last updated

In finance, a T-forward measure is a pricing measure absolutely continuous with respect to a risk-neutral measure but rather than using the money market as numeraire, it uses a bond with maturity T. The use of the forward measure was pioneered by Farshid Jamshidian (1987), and later used as a means of calculating the price of options on bonds. [1]

Finance Academic discipline studying businesses and investments

Finance is a field that is concerned with the allocation (investment) of assets and liabilities over space and time, often under conditions of risk or uncertainty. Finance can also be defined as the art of money management. Participants in the market aim to price assets based on their risk level, fundamental value, and their expected rate of return. Finance can be split into three sub-categories: public finance, corporate finance and personal finance.

In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.

Farshid Jamshidian Financial economist

Farshid Jamshidian is a finance researcher, academic and practitioner. His experience covers both fixed-income and equity research and trading. Dr. Jamshidian has made important contributions to the theory of derivatives pricing, and has published extensively, especially on interest rate modelling, amongst other contributions, developing the use of the forward measure, and "Jamshidian's trick", widely applied in the pricing of bond options.

Contents

Mathematical definition

Let [2]

be the bank account or money market account numeraire and

be the discount factor in the market at time 0 for maturity T. If is the risk neutral measure, then the forward measure is defined via the Radon–Nikodym derivative given by

Note that this implies that the forward measure and the risk neutral measure coincide when interest rates are deterministic. Also, this is a particular form of the change of numeraire formula by changing the numeraire from the money market or bank account B(t) to a T-maturity bond P(t,T). Indeed, if in general

is the price of a zero coupon bond at time t for maturity T, where is the filtration denoting market information at time t, then we can write

from which it is indeed clear that the forward T measure is associated to the T-maturity zero coupon bond as numeraire. For a more detailed discussion see Brigo and Mercurio (2001).

Consequences

The name "forward measure" comes from the fact that under the forward measure, forward prices are martingales, a fact first observed by Geman (1989) (who is responsible for formally defining the measure). [3] Compare with futures prices, which are martingales under the risk neutral measure. Note that when interest rates are deterministic, this implies that forward prices and futures prices are the same.

The forward price is the agreed upon price of an asset in a forward contract. Using the rational pricing assumption, for a forward contract on an underlying asset that is tradeable, we can express the forward price in terms of the spot price and any dividends. For forwards on non-tradeables, pricing the forward may be a complex task.

Martingale (probability theory) model in probability theory

In probability theory, a martingale is a sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence, given all prior values, is equal to the present value.

For example, the discounted stock price is a martingale under the risk-neutral measure:

The forward price is given by . Thus, we have

by using the Radon-Nikodym derivative and the equality . The last term is equal to unity by definition of the bond price so that we get

Related Research Articles

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price regardless of the risk of the security and its expected return. The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. It is widely used, although often with adjustments and corrections, by options market participants.

Girsanov theorem theorem

In probability theory, the Girsanov theorem describes how the dynamics of stochastic processes change when the original measure is changed to an equivalent probability measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument will take a particular value or values, to the risk-neutral measure which is a very useful tool for pricing derivatives on the underlying instrument.

The fundamental theorems of asset pricing provide necessary and sufficient conditions for a market to be arbitrage free and for a market to be complete. An arbitrage opportunity is a way of making money with no initial investment without any possibility of loss. Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit. The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models. A complete market is one in which every contingent claim can be replicated. Though this property is common in models, it is not always considered desirable or realistic.

Rational pricing is the assumption in financial economics that asset prices will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.

In financial mathematics, the Hull–White model is a model of future interest rates. In its most generic formulation, it belongs to the class of no-arbitrage models that are able to fit today's term structure of interest rates. It is relatively straightforward to translate the mathematical description of the evolution of future interest rates onto a tree or lattice and so interest rate derivatives such as bermudan swaptions can be valued in the model.

In finance, a foreign exchange option is a derivative financial instrument that gives the right but not the obligation to exchange money denominated in one currency into another currency at a pre-agreed exchange rate on a specified date. See Foreign exchange derivative.

The numéraire is a basic standard by which value is computed. In mathematical economics it is a tradable economic entity in terms of whose price the relative prices of all other tradables are expressed. In a monetary economy, acting as the numéraire is one of the functions of money, to serve as a unit of account: to provide a common benchmark relative to which the worths of various goods and services are measured. Using a numeraire, whether monetary or some consumable good, facilitates value comparisons when only the relative prices are relevant, as in general equilibrium theory. When economic analysis refers to a particular good as the numéraire, one says that all other prices are normalized by the price of that good. For example, if a unit of good g has twice the market value of a unit of the numeraire, then the (relative) price of g is 2. Since the value of one unit of the numeraire relative to one unit of itself is 1, the price of the numeraire is always 1.

In finance, a bond option is an option to buy or sell a bond at a certain price on or before the option expiry date. These instruments are typically traded OTC.

The Heath–Jarrow–Morton (HJM) framework is a general framework to model the evolution of interest rate curves – instantaneous forward rate curves in particular. When the volatility and drift of the instantaneous forward rate are assumed to be deterministic, this is known as the Gaussian Heath–Jarrow–Morton (HJM) model of forward rates. For direct modeling of simple forward rates the Brace–Gatarek–Musiela model represents an example.

In probability theory, the martingale representation theorem states that a random variable that is measurable with respect to the filtration generated by a Brownian motion can be written in terms of an Itô integral with respect to this Brownian motion.

In the fields of actuarial science and financial economics there are a number of ways that risk can be defined; to clarify the concept theoreticians have described a number of properties that a risk measure might or might not have. A coherent risk measure is a function that satisfies properties of monotonicity, sub-additivity, homogeneity, and translational invariance.

Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options, futures, interest rate derivatives, credit derivatives, etc.

Cox–Ingersoll–Ross model

In mathematical finance, the Cox–Ingersoll–Ross model describes the evolution of interest rates. It is a type of "one factor model" as it describes interest rate movements as driven by only one source of market risk. The model can be used in the valuation of interest rate derivatives. It was introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross as an extension of the Vasicek model.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst % of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

In mathematics, Doob's martingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a stochastic process exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a non-negative martingale, but the result is also valid for non-negative submartingales.

In probability and statistics, the Hellinger distance is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

The Brownian motion models for financial markets are based on the work of Robert C. Merton and Paul A. Samuelson, as extensions to the one-period market models of Harold Markowitz and William F. Sharpe, and are concerned with defining the concepts of financial assets and markets, portfolios, gains and wealth in terms of continuous-time stochastic processes.

In mathematical finance, Margrabe's formula is an option pricing formula applicable to an option to exchange one risky asset for another risky asset at maturity. It was derived by William Margrabe in 1978. Margrabe's paper has been cited by over 1500 subsequent articles.

References

  1. Jamshidian, Farshid (1989), "An Exact Bond Option Pricing Formula", The Journal of Finance, 44: 205–209, doi:10.1111/j.1540-6261.1989.tb02413.x
  2. Martingale methods in financial modelling. 2nd ed. New York : Springer-Verlag, 2004. Print.
  3. Geman, H. (1989) The importance of the forward neutral probability in the stochastic approach of interest rates. Working paper, ESSEC.

Damiano Brigo is an applied mathematician and Chair in Mathematical Finance at Imperial College London. He is known for research in filtering theory and mathematical finance.

Fabio Mercurio is an Italian mathematician, internationally known for a number of results in mathematical finance.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.

See also