Forward price

Last updated

The forward price (or sometimes forward rate) is the agreed upon price of an asset in a forward contract. [1] [2] Using the rational pricing assumption, for a forward contract on an underlying asset that is tradeable, the forward price can be expressed in terms of the spot price and any dividends. For forwards on non-tradeables, pricing the forward may be a complex task.

Contents

Forward price formula

If the underlying asset is tradable and a dividend exists, the forward price is given by:

where

is the forward price to be paid at time
is the exponential function (used for calculating continuous compounding interests)
is the risk-free interest rate
is the convenience yield
is the spot price of the asset (i.e. what it would sell for at time 0)
is a dividend that is guaranteed to be paid at time where

Proof of the forward price formula

The two questions here are what price the short position (the seller of the asset) should offer to maximize his gain, and what price the long position (the buyer of the asset) should accept to maximize his gain?

At the very least we know that both do not want to lose any money in the deal.

The short position knows as much as the long position knows: the short/long positions are both aware of any schemes that they could partake on to gain a profit given some forward price.

So of course they will have to settle on a fair price or else the transaction cannot occur.

An economic articulation would be:

(fair price + future value of asset's dividends) − spot price of asset = cost of capital
forward price = spot price − cost of carry

The future value of that asset's dividends (this could also be coupons from bonds, monthly rent from a house, fruit from a crop, etc.) is calculated using the risk-free force of interest. This is because we are in a risk-free situation (the whole point of the forward contract is to get rid of risk or to at least reduce it) so why would the owner of the asset take any chances? He would reinvest at the risk-free rate (i.e. U.S. T-bills which are considered risk-free). The spot price of the asset is simply the market value at the instant in time when the forward contract is entered into. So OUT − IN = NET GAIN and his net gain can only come from the opportunity cost of keeping the asset for that time period (he could have sold it and invested the money at the risk-free rate).

let

K = fair price
C = cost of capital
S = spot price of asset
F = future value of asset's dividend
I = present value of F (discounted using r )
r = risk-free interest rate compounded continuously
T = length of time from when the contract was entered into

Solving for fair price and substituting mathematics we get:

where:

(since where j is the effective rate of interest per time period of T )

where ci is the ith dividend paid at time t i.

Doing some reduction we end up with:

Notice that implicit in the above derivation is the assumption that the underlying can be traded. This assumption does not hold for certain kinds of forwards.

Forward versus futures prices

There is a difference between forward and futures prices when interest rates are stochastic. This difference disappears when interest rates are deterministic.

In the language of stochastic processes, the forward price is a martingale under the forward measure, whereas the futures price is a martingale under the risk-neutral measure. The forward measure and the risk neutral measure are the same when interest rates are deterministic.

See also

Related Research Articles

Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of finance.

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments, using various underlying assumptions. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.

In financial mathematics, the put–call parity defines a relationship between the price of a European call option and European put option, both with the identical strike price and expiry, namely that a portfolio of a long call option and a short put option is equivalent to a single forward contract at this strike price and expiry. This is because if the price at expiry is above the strike price, the call will be exercised, while if it is below, the put will be exercised, and thus in either case one unit of the asset will be purchased for the strike price, exactly as in a forward contract.

<span class="mw-page-title-main">Futures contract</span> Standard forward contract

In finance, a futures contract is a standardized legal contract to buy or sell something at a predetermined price for delivery at a specified time in the future, between parties not yet known to each other. The asset transacted is usually a commodity or financial instrument. The predetermined price of the contract is known as the forward price. The specified time in the future when delivery and payment occur is known as the delivery date. Because it derives its value from the value of the underlying asset, a futures contract is a derivative.

<span class="mw-page-title-main">Forward contract</span> Agreement to sell or buy a good at a specific time and price

In finance, a forward contract or simply a forward is a non-standardized contract between two parties to buy or sell an asset at a specified future time at a price agreed on at the time of conclusion of the contract, making it a type of derivative instrument. The party agreeing to buy the underlying asset in the future assumes a long position, and the party agreeing to sell the asset in the future assumes a short position. The price agreed upon is called the delivery price, which is equal to the forward price at the time the contract is entered into.

In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of a derivative instrument such as an option to changes in one or more underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.

In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.

The fundamental theorems of asset pricing, in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An arbitrage opportunity is a way of making money with no initial investment without any possibility of loss. Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit. The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models. A complete market is one in which every contingent claim can be replicated. Though this property is common in models, it is not always considered desirable or realistic.

In economics and accounting, the cost of capital is the cost of a company's funds, or from an investor's point of view is "the required rate of return on a portfolio company's existing securities". It is used to evaluate new projects of a company. It is the minimum return that investors expect for providing capital to the company, thus setting a benchmark that a new project has to meet.

Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.

In finance, a foreign exchange option is a derivative financial instrument that gives the right but not the obligation to exchange money denominated in one currency into another currency at a pre-agreed exchange rate on a specified date. See Foreign exchange derivative.

A variance swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.

The cost of carry or carrying charge is the cost of holding a security or a physical commodity over a period of time. The carrying charge includes insurance, storage and interest on the invested funds as well as other incidental costs. In interest rate futures markets, it refers to the differential between the yield on a cash instrument and the cost of the funds necessary to buy the instrument.

In finance, return is a profit on an investment. It comprises any change in value of the investment, and/or cash flows which the investor receives from that investment over a specified time period, such as interest payments, coupons, cash dividends and stock dividends. It may be measured either in absolute terms or as a percentage of the amount invested. The latter is also called the holding period return.

Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options, futures, interest rate derivatives, credit derivatives, etc.

The following outline is provided as an overview of and topical guide to finance:

Spot–future parity is a parity condition whereby, if an asset can be purchased today and held until the exercise of a futures contract, the value of the future should equal the current spot price adjusted for the cost of money, dividends, "convenience yield" and any carrying costs. That is, if a person can purchase a good for price S and conclude a contract to sell it one month later at a price of F, the price difference should be no greater than the cost of using money less any expenses from holding the asset; if the difference is greater, the person has an opportunity to buy and sell the "spots" and "futures" for a risk-free profit, i.e. an arbitrage. Spot–future parity is an application of the law of one price; see also Rational pricing and #Futures.

In finance, a T-forward measure is a pricing measure absolutely continuous with respect to a risk-neutral measure, but rather than using the money market as numeraire, it uses a bond with maturity T. The use of the forward measure was pioneered by Farshid Jamshidian (1987), and later used as a means of calculating the price of options on bonds.

In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to

A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant. Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.

References

  1. Van der Hoek, John (2006). Binomial models in finance. Robert J. Elliott. New York, NY: Springer. p. 41. ISBN   978-0-387-31607-9. OCLC   209909002.
  2. Chen, Ren-Raw; Huang, Jing-Zhi (2002-11-01). "A Note on Forward Price and Forward Measure". Review of Quantitative Finance and Accounting. 19 (3): 261–272. doi:10.1023/A:1020715407939. ISSN   1573-7179.

Bibliography