Asian option

Last updated

An Asian option (or average value option) is a special type of option contract. For Asian options, the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European option and American option, where the payoff of the option contract depends on the price of the underlying instrument at exercise; Asian options are thus one of the basic forms of exotic options.

Contents

There are two types of Asian options: Average Price Option (fixed strike), where the strike price is predetermined and the averaging price of the underlying asset is used for payoff calculation; and Average Strike Option (floating strike), where the averaging price of the underlying asset over the duration becomes the strike price.

One advantage of Asian options is that these reduce the risk of market manipulation of the underlying instrument at maturity. [1] Another advantage of Asian options involves the relative cost of Asian options compared to European or American options. Because of the averaging feature, Asian options reduce the volatility inherent in the option; therefore, Asian options are typically cheaper than European or American options. This can be an advantage for corporations that are subject to the Financial Accounting Standards Board revised Statement No. 123, which required that corporations expense employee stock options. [2]

Etymology

In the 1980s Mark Standish was with the London-based Bankers Trust working on fixed income derivatives and proprietary arbitrage trading. David Spaughton worked as a systems analyst in the financial markets with Bankers Trust since 1984 when the Bank of England first gave licences for banks to do foreign exchange options in the London market. In 1987 Standish and Spaughton were in Tokyo on business when "they developed the first commercially used pricing formula for options linked to the average price of crude oil." They called this exotic option the Asian option because they were in Asia. [3] [4] [5] [6]

Permutations of Asian option

There are numerous permutations of Asian option; the most basic are listed below:

where A denotes the average price for the period [0, T], and K is the strike price.
The equivalent put option is given by
where S(T) is the price at maturity and k is a weighting, usually 1 so often omitted from descriptions.
The equivalent put option payoff is given by

Types of averaging

The Average may be obtained in many ways. Conventionally, this means an arithmetic average. In the continuous case, this is obtained by

For the case of discrete monitoring (with monitoring at the times and ) we have the average given by

There also exist Asian options with geometric average; in the continuous case, this is given by

Pricing of Asian options

A discussion of the problem of pricing Asian options with Monte Carlo methods is given in a paper by Kemna and Vorst. [7]

In the path integral approach to option pricing, [8] the problem for geometric average can be solved via the Effective Classical potential [9] of Feynman and Kleinert. [10]

Rogers and Shi solve the pricing problem with a PDE approach. [11]

A Variance Gamma model can be efficiently implemented when pricing Asian-style options. Then, using the Bondesson series representation to generate the variance gamma process can increase the computational performance of the Asian option pricer. [12]

Within jump diffusions and stochastic volatility models, the pricing problem for geometric Asian options can still be solved. [13] For the arithmetic Asian option in Lévy models, one can rely on numerical methods [13] or on analytic bounds. [14]

European Asian call and put options with geometric averaging

We are able to derive a closed-form solution for the geometric Asian option; when used in conjunction with control variates in Monte Carlo simulations, the formula is useful for deriving fair values for the arithmetic Asian option.

Define the continuous-time geometric mean as:

where the underlying follows a standard geometric Brownian motion. It is straightforward from here to calculate that:

To derive the stochastic integral, which was originally , note that:

This may be confirmed by Itô's lemma. Integrating this expression and using the fact that , we find that the integrals are equivalent - this will be useful later on in the derivation. Using martingale pricing, the value of the European Asian call with geometric averaging is given by:

In order to find , we must find such that:

After some algebra, we find that:

At this point the stochastic integral is the sticking point for finding a solution to this problem. However, it is easy to verify that the integral is normally distributed as:

This is equivalent to saying that with . Therefore, we have that:

Now it is possible the calculate the value of the European Asian call with geometric averaging! At this point, it is useful to define:

Going through the same process as is done with the Black-Scholes model, we are able to find that:

In fact, going through the same arguments for the European Asian put with geometric averaging , we find that:

This implies that there exists a version of put-call parity for European Asian options with geometric averaging:

Variations of Asian option

There are some variations that are sold in the over-the-counter market. For example, BNP Paribas introduced a variation, termed conditional Asian option, where the average underlying price is based on observations of prices over a pre-specified threshold. A conditional Asian put option has the payoff

where is the threshold and is an indicator function which equals if is true and equals zero otherwise. Such an option offers a cheaper alternative than the classic Asian put option, as the limitation on the range of observations reduces the volatility of average price. It is typically sold at the money and last for up to five years. The pricing of conditional Asian option is discussed by Feng and Volkmer. [15]

Related Research Articles

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments, using various underlying assumptions. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.

<span class="mw-page-title-main">Geometric Brownian motion</span> Continuous stochastic process

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

In mathematics, Itô's lemma or Itô's formula is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

The Black model is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

Lookback options, in the terminology of finance, are a type of exotic option with path dependency, among many other kind of options. The payoff depends on the optimal underlying asset's price occurring over the life of the option. The option allows the holder to "look back" over time to determine the payoff. There exist two kinds of lookback options: with floating strike and with fixed strike.

The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947, when Kac and Feynman were both Cornell faculty, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question.

In financial mathematics, the Hull–White model is a model of future interest rates. In its most generic formulation, it belongs to the class of no-arbitrage models that are able to fit today's term structure of interest rates. It is relatively straightforward to translate the mathematical description of the evolution of future interest rates onto a tree or lattice and so interest rate derivatives such as bermudan swaptions can be valued in the model.

A variance swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.

<span class="mw-page-title-main">Kelly criterion</span> Formula for bet sizing that maximizes the expected logarithmic value

In probability theory, the Kelly criterion is a formula for sizing a bet. The Kelly bet size is found by maximizing the expected value of the logarithm of wealth, which is equivalent to maximizing the expected geometric growth rate. Assuming that the expected returns are known, the Kelly criterion leads to higher wealth than any other strategy in the long run. J. L. Kelly Jr, a researcher at Bell Labs, described the criterion in 1956.

In mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance. A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.

In mathematical finance, the SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. The name stands for "stochastic alpha, beta, rho", referring to the parameters of the model. The SABR model is widely used by practitioners in the financial industry, especially in the interest rate derivative markets. It was developed by Patrick S. Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to

A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant. Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.

<span class="mw-page-title-main">Black–Scholes equation</span> Partial differential equation in mathematical finance

In mathematical finance, the Black–Scholes equation is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.

The Vanna–Volga method is a mathematical tool used in finance. It is a technique for pricing first-generation exotic options in foreign exchange market (FX) derivatives.

In mathematical finance, Margrabe's formula is an option pricing formula applicable to an option to exchange one risky asset for another risky asset at maturity. It was derived by William Margrabe in 1978. Margrabe's paper has been cited by over 2000 subsequent articles.

The Datar–Mathews Method is a method for real options valuation. The method provides an easy way to determine the real option value of a project simply by using the average of positive outcomes for the project. The method can be understood as an extension of the net present value (NPV) multi-scenario Monte Carlo model with an adjustment for risk aversion and economic decision-making. The method uses information that arises naturally in a standard discounted cash flow (DCF), or NPV, project financial valuation. It was created in 2000 by Vinay Datar, professor at Seattle University; and Scott H. Mathews, Technical Fellow at The Boeing Company.

In finance, an option on realized variance is a type of variance derivatives which is the derivative securities on which the payoff depends on the annualized realized variance of the return of a specified underlying asset, such as stock index, bond, exchange rate, etc. Another liquidated security of the same type is variance swap, which is, in other words, the futures contract on realized variance.

In finance, option on realized volatility is a subclass of derivatives securities that the payoff function embedded with the notion of annualized realized volatility of a specified underlying asset, which could be stock index, bond, foreign exchange rate, etc. Another product of volatility derivative that is widely traded refers to the volatility swap, which is in another word the forward contract on future realized volatility.

References

  1. Kemna & Vorst 1990 , p. 1077
  2. FASB (2004). Share-based payment (Report). Financial Accounting Standards Board. Archived from the original on 2018-12-05. Retrieved 2010-04-07.
  3. William Falloon; David Turner, eds. (1999). "The evolution of a market". Managing Energy Price Risk. London: Risk Books.
  4. Wilmott, Paul (2006). "25". Paul Wilmott on Quantitative Finance. John Wiley & Sons. p. 427. ISBN   9780470060773.
  5. Palmer, Brian (July 14, 2010), Why Do We Call Financial Instruments "Exotic"? Because some of them are from Japan., Slate
  6. Glyn A. Holton (2013). "Asian Option (Average Option)". Risk Encyclopedia. Archived from the original on 2013-12-06. Retrieved 2013-08-10. An Asian option (also called an average option) is an option whose payoff is linked to the average value of the underlier on a specific set of dates during the life of the option." "[I]n situations where the underlier is thinly traded or there is the potential for its price to be manipulated, an Asian option offers some protection. It is more difficult to manipulate the average value of an underlier over an extended period of time than it is to manipulate it just at the expiration of an option.
  7. Kemna, A.G.Z.; Vorst, A.C.F. (1990), "A Pricing Method for Options Based on Average Asset Values", Journal of Banking & Finance, 14 (1): 113–129, doi:10.1016/0378-4266(90)90039-5
  8. Kleinert, H. (2009), Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, archived from the original on 2009-04-24, retrieved 2010-01-10
  9. Feynman R.P., Kleinert H. (1986), "Effective classical partition functions" (PDF), Physical Review A , 34 (6): 5080–5084, Bibcode:1986PhRvA..34.5080F, doi:10.1103/PhysRevA.34.5080, PMID   9897894
  10. Devreese J.P.A.; Lemmens D.; Tempere J. (2010), "Path integral approach to Asianoptions in the Black-Scholes model", Physica A, 389 (4): 780–788, arXiv: 0906.4456 , Bibcode:2010PhyA..389..780D, doi:10.1016/j.physa.2009.10.020, S2CID   122748812
  11. Rogers, L.C.G.; Shi, Z. (1995), "The value of an Asian option" (PDF), Journal of Applied Probability, 32 (4): 1077–1088, doi:10.2307/3215221, JSTOR   3215221, S2CID   120793076, archived from the original (PDF) on 2009-03-20, retrieved 2008-11-28
  12. Mattias Sander. Bondesson's Representation of the Variance Gamma Model and Monte Carlo Option Pricing. Lunds Tekniska Högskola 2008
  13. 1 2 Kirkby, J.L.; Nguyen, Duy (2020), "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models", Annals of Finance, 16 (3): 307–351, doi:10.1007/s10436-020-00366-0, S2CID   8038376
  14. Lemmens, Damiaan; Liang, Ling Zhi; Tempere, Jacques; De Schepper, Ann (2010), "Pricing bounds for discrete arithmetic Asian options under Lévy models", Physica A: Statistical Mechanics and Its Applications, 389 (22): 5193–5207, Bibcode:2010PhyA..389.5193L, doi:10.1016/j.physa.2010.07.026
  15. Feng, R.; Volkmer, H.W. (2015), "Conditional Asian Options", International Journal of Theoretical and Applied Finance , 18 (6): 1550040, arXiv: 1505.06946 , doi:10.1142/S0219024915500405, S2CID   3245552