Monte Carlo methods for option pricing

Last updated

In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features. [1] The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.

Contents

Methodology

As is standard, Monte Carlo valuation relies on risk neutral valuation. [1] Here the price of the option is its discounted expected value; see risk neutrality and rational pricing. The technique applied then, is (1) to generate a large number of possible, but random, price paths for the underlying (or underlyings) via simulation, and (2) to then calculate the associated exercise value (i.e. "payoff") of the option for each path. (3) These payoffs are then averaged and (4) discounted to today. This result is the value of the option. [2]

This approach, although relatively straightforward, allows for increasing complexity:

Least Square Monte Carlo

Least Square Monte Carlo is a technique for valuing early-exercise options (i.e. Bermudan or American options). It was first introduced by Jacques Carriere in 1996. [12]

It is based on the iteration of a two step procedure:

Application

As can be seen, Monte Carlo Methods are particularly useful in the valuation of options with multiple sources of uncertainty or with complicated features, which would make them difficult to value through a straightforward Black–Scholes-style or lattice based computation. The technique is thus widely used in valuing path dependent structures like lookback- and Asian options [10] and in real options analysis. [1] [7] Additionally, as above, the modeller is not limited as to the probability distribution assumed. [10]

Conversely, however, if an analytical technique for valuing the option exists—or even a numeric technique, such as a (modified) pricing tree [10] —Monte Carlo methods will usually be too slow to be competitive. They are, in a sense, a method of last resort; [10] see further under Monte Carlo methods in finance. With faster computing capability this computational constraint is less of a concern.[ according to whom? ]

See also

Related Research Articles

<span class="mw-page-title-main">Financial economics</span> Academic discipline concerned with the exchange of money

Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of finance.

Real options valuation, also often termed real options analysis, applies option valuation techniques to capital budgeting decisions. A real option itself, is the right—but not the obligation—to undertake certain business initiatives, such as deferring, abandoning, expanding, staging, or contracting a capital investment project. For example, real options valuation could examine the opportunity to invest in the expansion of a firm's factory and the alternative option to sell the factory.

In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options—as well as others where the payoff is calculated similarly—are referred to as "vanilla options". Options where the payoff is calculated differently are categorized as "exotic options". Exotic options can pose challenging problems in valuation and hedging.

In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

An Asian option is a special type of option contract. For Asian options, the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European option and American option, where the payoff of the option contract depends on the price of the underlying instrument at exercise; Asian options are thus one of the basic forms of exotic options.

Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.

Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the distribution of their value over the range of resultant outcomes. This is usually done by help of stochastic asset models. The advantage of Monte Carlo methods over other techniques increases as the dimensions of the problem increase.

In finance, a price (premium) is paid or received for purchasing or selling options. This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.

<span class="mw-page-title-main">Lattice model (finance)</span> Method for evaluating stock options that divides time into discrete intervals

In quantitative finance, a lattice model is a mathematical approach to the valuation of derivatives in situations requiring a discrete time model. For dividend paying equity options, a typical application would correspond to the pricing of an American-style option, where a decision to exercise is allowed at any time up to the maturity. A continuous model, on the other hand, such as the standard Black–Scholes one, would only allow for the valuation of European options, where exercise is limited to the option's maturity date. For interest rate derivatives lattices are additionally useful in that they address many of the issues encountered with continuous models, such as pull to par. The method is also used for valuing certain exotic options, because of path dependence in the payoff. Traditional Monte Carlo methods for option pricing fail to account for optimal decisions to terminate the derivative by early exercise, but some methods now exist for solving this problem.

Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options, futures, interest rate derivatives, credit derivatives, etc.

In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name derives from the models' treatment of the underlying security's volatility as a random process, governed by state variables such as the price level of the underlying security, the tendency of volatility to revert to some long-run mean value, and the variance of the volatility process itself, among others.

The following outline is provided as an overview of and topical guide to finance:

In finance, an option is a contract which conveys to its owner, the holder, the right, but not the obligation, to buy or sell a specific quantity of an underlying asset or instrument at a specified strike price on or before a specified date, depending on the style of the option.

In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.

Rainbow option is a derivative exposed to two or more sources of uncertainty, as opposed to a simple option that is exposed to one source of uncertainty, such as the price of underlying asset.

A Credit valuation adjustment (CVA), in financial mathematics, is an "adjustment" to a derivative's price, as charged by a bank to a counterparty to compensate it for taking on the credit risk of that counterparty during the life of the transaction. CVA is one of a family of related valuation adjustments, collectively xVA; for further context here see Financial economics § Derivative pricing. "CVA" can refer more generally to several related concepts, as delineated aside. The most common transactions attracting CVA involve interest rate derivatives, foreign exchange derivatives, and combinations thereof. CVA has a specific capital charge under Basel III, and may also result in earnings volatility under IFRS 13, and is therefore managed by a specialized desk.

Quantitative analysis is the use of mathematical and statistical methods in finance and investment management. Those working in the field are quantitative analysts (quants). Quants tend to specialize in specific areas which may include derivative structuring or pricing, risk management, investment management and other related finance occupations. The occupation is similar to those in industrial mathematics in other industries. The process usually consists of searching vast databases for patterns, such as correlations among liquid assets or price-movement patterns.

The Datar–Mathews Method is a method for real options valuation. The method provides an easy way to determine the real option value of a project simply by using the average of positive outcomes for the project. The method can be understood as an extension of the net present value (NPV) multi-scenario Monte Carlo model with an adjustment for risk aversion and economic decision-making. The method uses information that arises naturally in a standard discounted cash flow (DCF), or NPV, project financial valuation. It was created in 2000 by Vinay Datar, professor at Seattle University; and Scott H. Mathews, Technical Fellow at The Boeing Company.

Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field.

Multilevel Monte Carlo (MLMC) methods in numerical analysis are algorithms for computing expectations that arise in stochastic simulations. Just as Monte Carlo methods, they rely on repeated random sampling, but these samples are taken on different levels of accuracy. MLMC methods can greatly reduce the computational cost of standard Monte Carlo methods by taking most samples with a low accuracy and corresponding low cost, and only very few samples are taken at high accuracy and corresponding high cost.

References

Notes

  1. Although the term 'Monte Carlo method' was coined by Stanislaw Ulam in the 1940s, some trace such methods to the 18th century French naturalist Buffon, and a question he asked about the results of dropping a needle randomly on a striped floor or table. See Buffon's needle.

Sources

  1. 1 2 3 4 Marco Dias: Real Options with Monte Carlo Simulation
  2. 1 2 Don Chance: Teaching Note 96-03: Monte Carlo Simulation
  3. Peter Carr and Guang Yang: Simulating American Bond Options in an HJM Framework
  4. Carlos Blanco, Josh Gray and Marc Hazzard: Alternative Valuation Methods for Swaptions: The Devil is in the Details Archived 2007-12-02 at the Wayback Machine
  5. Frank J. Fabozzi: Valuation of fixed income securities and derivatives, pg. 138
  6. Donald R. van Deventer (Kamakura Corporation): Pitfalls in Asset and Liability Management: One Factor Term Structure Models Archived 2012-04-03 at the Wayback Machine
  7. 1 2 Gonzalo Cortazar, Miguel Gravet and Jorge Urzua: The valuation of multidimensional American real options using the LSM simulation method
  8. global-derivatives.com: Basket Options – Simulation
  9. Rubinstein, Mark. "Somewhere over the rainbow." Risk 4.11 (1991): 61-63.
  10. 1 2 3 4 5 Rich Tanenbaum: Battle of the Pricing Models: Trees vs Monte Carlo
  11. Les Clewlow, Chris Strickland and Vince Kaminski: Extending mean-reversion jump diffusion
  12. 1 2 Carriere, Jacques (1996). "Valuation of the early-exercise price for options using simulations and nonparametric regression". Insurance: Mathematics and Economics. 19: 19–30. doi:10.1016/S0167-6687(96)00004-2.
  13. Longstaff, Francis. "Valuing American Options by Simulation: A Simple Least-Squares Approach" (PDF). Retrieved 18 December 2019.

Primary references

Bibliography

Online tools

Discussion papers and documents