A short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written .
Under a short rate model, the stochastic state variable is taken to be the instantaneous spot rate. [1] The short rate, , then, is the (continuously compounded, annualized) interest rate at which an entity can borrow money for an infinitesimally short period of time from time . Specifying the current short rate does not specify the entire yield curve. However, no-arbitrage arguments show that, under some fairly relaxed technical conditions, if we model the evolution of as a stochastic process under a risk-neutral measure , then the price at time of a zero-coupon bond maturing at time with a payoff of 1 is given by
where is the natural filtration for the process. The interest rates implied by the zero coupon bonds form a yield curve, or more precisely, a zero curve. Thus, specifying a model for the short rate specifies future bond prices. This means that instantaneous forward rates are also specified by the usual formula
Short rate models are often classified as endogenous and exogenous. Endogenous short rate models are short rate models where the term structure of interest rates, or of zero-coupon bond prices , is an output of the model, so it is "inside the model" (endogenous) and is determined by the model parameters. Exogenous short rate models are models where such term structure is an input, as the model involves some time dependent functions or shifts that allow for inputing a given market term structure, so that the term structure comes from outside (exogenous). [2]
Throughout this section represents a standard Brownian motion under a risk-neutral probability measure and its differential. Where the model is lognormal, a variable is assumed to follow an Ornstein–Uhlenbeck process and is assumed to follow .
Following are the one-factor models, where a single stochastic factor – the short rate – determines the future evolution of all interest rates. Other than Rendleman–Bartter and Ho–Lee, which do not capture the mean reversion of interest rates, these models can be thought of as specific cases of Ornstein–Uhlenbeck processes. The Vasicek, Rendleman–Bartter and CIR models are endogenous models and have only a finite number of free parameters and so it is not possible to specify these parameter values in such a way that the model coincides with a few observed market prices ("calibration") of zero coupon bonds or linear products such as forward rate agreements or swaps, typically, or a best fit is done to these linear products to find the endogenous short rate models parameters that are closest to the market prices. This does not allow for fitting options like caps, floors and swaptions as the parameters have been used to fit linear instruments instead. This problem is overcome by allowing the parameters to vary deterministically with time, [3] [4] or by adding a deterministic shift to the endogenous model. [5] In this way, exogenous models such as Ho-Lee and subsequent models, can be calibrated to market data, meaning that these can exactly return the price of bonds comprising the yield curve, and the remaining parameters can be used for options calibration. The implementation is usually via a (binomial) short rate tree [6] or simulation; see Lattice model (finance) § Interest rate derivatives and Monte Carlo methods for option pricing, although some short rate models have closed form solutions for zero coupon bonds, and even caps or floors, easing the calibration task considerably. We list the following endogenous models first.
We now list a number of exogenous short rate models.
The idea of a deterministic shift can be applied also to other models that have desirable properties in their endogenous form. For example, one could apply the shift to the Vasicek model, but due to linearity of the Ornstein-Uhlenbeck process, this is equivalent to making a time dependent function, and would thus coincide with the Hull-White model. [5]
Besides the above one-factor models, there are also multi-factor models of the short rate, among them the best known are the Longstaff and Schwartz two factor model and the Chen three factor model (also called "stochastic mean and stochastic volatility model"). Note that for the purposes of risk management, "to create realistic interest rate simulations", these multi-factor short-rate models are sometimes preferred over One-factor models, as they produce scenarios which are, in general, better "consistent with actual yield curve movements". [23]
The other major framework for interest rate modelling is the Heath–Jarrow–Morton framework (HJM). Unlike the short rate models described above, this class of models is generally non-Markovian. This makes general HJM models computationally intractable for most purposes. The great advantage of HJM models is that they give an analytical description of the entire yield curve, rather than just the short rate. For some purposes (e.g., valuation of mortgage backed securities), this can be a big simplification. The Cox–Ingersoll–Ross and Hull–White models in one or more dimensions can both be straightforwardly expressed in the HJM framework. Other short rate models do not have any simple dual HJM representation.
The HJM framework with multiple sources of randomness, including as it does the Brace–Gatarek–Musiela model and market models, is often preferred for models of higher dimension.
Models based on Fischer Black's shadow rate are used when interest rates approach the zero lower bound.
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
The Black model is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.
In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of a derivative instrument such as an option to changes in one or more underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.
An Asian option is a special type of option contract. For Asian options, the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European option and American option, where the payoff of the option contract depends on the price of the underlying instrument at exercise; Asian options are thus one of the basic forms of exotic options.
In financial mathematics, the Hull–White model is a model of future interest rates. In its most generic formulation, it belongs to the class of no-arbitrage models that are able to fit today's term structure of interest rates. It is relatively straightforward to translate the mathematical description of the evolution of future interest rates onto a tree or lattice and so interest rate derivatives such as bermudan swaptions can be valued in the model.
In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.
In mathematical finance, the Black–Derman–Toy model (BDT) is a popular short-rate model used in the pricing of bond options, swaptions and other interest rate derivatives; see Lattice model (finance) § Interest rate derivatives. It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the log-normal distribution, and is still widely used.
In financial mathematics, the Ho-Lee model is a short-rate model widely used in the pricing of bond options, swaptions and other interest rate derivatives, and in modeling future interest rates. It was developed in 1986 by Thomas Ho and Sang Bin Lee.
In finance, the Vasicek model is a mathematical model describing the evolution of interest rates. It is a type of one-factor short-rate model as it describes interest rate movements as driven by only one source of market risk. The model can be used in the valuation of interest rate derivatives, and has also been adapted for credit markets. It was introduced in 1977 by Oldřich Vašíček, and can be also seen as a stochastic investment model.
The LIBOR market model, also known as the BGM Model is a financial model of interest rates. It is used for pricing interest rate derivatives, especially exotic derivatives like Bermudan swaptions, ratchet caps and floors, target redemption notes, autocaps, zero coupon swaptions, constant maturity swaps and spread options, among many others. The quantities that are modeled, rather than the short rate or instantaneous forward rates are a set of forward rates, which have the advantage of being directly observable in the market, and whose volatilities are naturally linked to traded contracts. Each forward rate is modeled by a lognormal process under its forward measure, i.e. a Black model leading to a Black formula for interest rate caps. This formula is the market standard to quote cap prices in terms of implied volatilities, hence the term "market model". The LIBOR market model may be interpreted as a collection of forward LIBOR dynamics for different forward rates with spanning tenors and maturities, each forward rate being consistent with a Black interest rate caplet formula for its canonical maturity. One can write the different rates' dynamics under a common pricing measure, for example the forward measure for a preferred single maturity, and in this case forward rates will not be lognormal under the unique measure in general, leading to the need for numerical methods such as Monte Carlo simulation or approximations like the frozen drift assumption.
In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name derives from the models' treatment of the underlying security's volatility as a random process, governed by state variables such as the price level of the underlying security, the tendency of volatility to revert to some long-run mean value, and the variance of the volatility process itself, among others.
In mathematical finance, the SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. The name stands for "stochastic alpha, beta, rho", referring to the parameters of the model. The SABR model is widely used by practitioners in the financial industry, especially in the interest rate derivative markets. It was developed by Patrick S. Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.
In finance, the Chen model is a mathematical model describing the evolution of interest rates. It is a type of "three-factor model" as it describes interest rate movements as driven by three sources of market risk. It was the first stochastic mean and stochastic volatility model and it was published in 1994 by Lin Chen, economist, theoretical physicist and former lecturer/professor at Beijing Institute of Technology, American University of Beirut, Yonsei University of Korea, and SunYetSan University.
The Rendleman–Bartter model in finance is a short-rate model describing the evolution of interest rates. It is a "one factor model" as it describes interest rate movements as driven by only one source of market risk. It can be used in the valuation of interest rate derivatives. It is a stochastic asset model.
In mathematical finance, the Cox–Ingersoll–Ross (CIR) model describes the evolution of interest rates. It is a type of "one factor model" as it describes interest rate movements as driven by only one source of market risk. The model can be used in the valuation of interest rate derivatives. It was introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross as an extension of the Vasicek model, itself an Ornstein–Uhlenbeck process.
A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant. Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.
In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.
In financial mathematics, the Black–Karasinski model is a mathematical model of the term structure of interest rates; see short-rate model. It is a one-factor model as it describes interest rate movements as driven by a single source of randomness. It belongs to the class of no-arbitrage models, i.e. it can fit today's zero-coupon bond prices, and in its most general form, today's prices for a set of caps, floors or European swaptions. The model was introduced by Fischer Black and Piotr Karasinski in 1991.
An affine term structure model is a financial model that relates zero-coupon bond prices to a spot rate model. It is particularly useful for deriving the yield curve – the process of determining spot rate model inputs from observable bond market data. The affine class of term structure models implies the convenient form that log bond prices are linear functions of the spot rate.
In mathematics, the Chan–Karolyi–Longstaff–Sanders process is a stochastic process with applications to finance. In particular it has been used to model the term structure of interest rates. The CKLS process can also be viewed as a generalization of the Ornstein–Uhlenbeck process. It is named after K. C. Chan, G. Andrew Karolyi, Francis A. Longstaff, and Anthony B. Sanders, with their paper published in 1992.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)