Option time value

Last updated

In finance, the time value (TV) (extrinsic or instrumental value) of an option is the premium a rational investor would pay over its current exercise value (intrinsic value), based on the probability it will increase in value before expiry. For an American option this value is always greater than zero in a fair market, thus an option is always worth more than its current exercise value. [1] As an option can be thought of as 'price insurance' (e.g., an airline insuring against unexpected soaring fuel costs caused by a hurricane), TV can be thought of as the risk premium the option seller charges the buyer—the higher the expected risk (volatility time), the higher the premium. Conversely, TV can be thought of as the price an investor is willing to pay for potential upside.

Contents

Time value decays to zero at expiration, with a general rule that it will lose 13 of its value during the first half of its life and 23 in the second half. [2] As an option moves closer to expiry, moving its price requires an increasingly larger move in the price of the underlying security. [3]

Intrinsic value

The intrinsic value (IV) of an option is the value of exercising it now. If the price of the underlying stock is above a call option strike price, the option has a positive monetary value, and is referred to as being in-the-money. If the underlying stock is priced cheaper than the call option's strike price, the call option is referred to as being out-of-the-money. If an option is out-of-the-money at expiration, its holder simply abandons the option and it expires worthless. Hence, a purchased option can never have a negative value. [4] This is because a rational investor would choose to buy the underlying stock at the market price rather than exercise an out-of-the-money call option to buy the same stock at a higher-than-market price.

For the same reasons, a put option is in-the-money if it allows the purchase of the underlying at a market price below the strike price of the put option. A put option is out-of-the-money if the underlying's spot price is higher than the strike price.

As shown in the below equations and graph, the intrinsic value (IV) of a call option is positive when the underlying asset's spot price S exceeds the option's strike price K.

Value of a call option: , or
Value of a put option: , or

Option value

Option Value Option value.gif
Option Value

Option value (i.e.,. price) is estimated via a predictive formula such as Black-Scholes or using a numerical method such as the Binomial model. This price incorporates the expected probability of the option finishing "in-the-money". For an out-of-the-money option, the further in the future the expiration date—i.e. the longer the time to exercise—the higher the chance of this occurring, and thus the higher the option price; for an in-the-money option the chance of being in the money decreases; however the fact that the option cannot have negative value also works in the owner's favor. The sensitivity of the option value to the amount of time to expiry is known as the option's theta. The option value will never be lower than its IV.

As seen on the graph, the full call option value (IV + TV), at a given time t, is the red line. [5]





Time value

Time value is, as above, the difference between option value and intrinsic value, i.e.

Time Value = Option Value − Intrinsic Value

More specifically, TV reflects the probability that the option will gain in IV — become (more) profitable to exercise before it expires. [6] An important factor is the option's volatility. Volatile prices of the underlying instrument can stimulate option demand, enhancing the value. Numerically, this value depends on the time until the expiration date and the volatility of the underlying instrument's price. TV of American option cannot be negative (because the option value is never lower than IV), and converges to zero at expiration. Prior to expiration, the change in TV with time is non-linear, being a function of the option price. [7]

See also

Related Research Articles

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments, using various underlying assumptions. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.

<span class="mw-page-title-main">Call option</span> Contract giving a buyer the right to buy a security from the seller at a set price

In finance, a call option, often simply labeled a "call", is a contract between the buyer and the seller of the call option to exchange a security at a set price. The buyer of the call option has the right, but not the obligation, to buy an agreed quantity of a particular commodity or financial instrument from the seller of the option at or before a certain time for a certain price. This effectively gives the owner a long position in the given asset. The seller is obliged to sell the commodity or financial instrument to the buyer if the buyer so decides. This effectively gives the seller a short position in the given asset. The buyer pays a fee for this right. The term "call" comes from the fact that the owner has the right to "call the stock away" from the seller.

In finance, a put or put option is a derivative instrument in financial markets that gives the holder the right to sell an asset, at a specified price, by a specified date to the writer of the put. The purchase of a put option is interpreted as a negative sentiment about the future value of the underlying stock. The term "put" comes from the fact that the owner has the right to "put up for sale" the stock or index.

In financial mathematics, the put–call parity defines a relationship between the price of a European call option and European put option, both with the identical strike price and expiry, namely that a portfolio of a long call option and a short put option is equivalent to a single forward contract at this strike price and expiry. This is because if the price at expiry is above the strike price, the call will be exercised, while if it is below, the put will be exercised, and thus in either case one unit of the asset will be purchased for the strike price, exactly as in a forward contract.

In finance, an interest rate cap is a type of interest rate derivative in which the buyer receives payments at the end of each period in which the interest rate exceeds the agreed strike price. An example of a cap would be an agreement to receive a payment for each month the LIBOR rate exceeds 2.5%.

In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options—as well as others where the payoff is calculated similarly—are referred to as "vanilla options". Options where the payoff is calculated differently are categorized as "exotic options". Exotic options can pose challenging problems in valuation and hedging.

<span class="mw-page-title-main">Strike price</span> Options fixed price to exercise it on the expiration date

In finance, the strike price of an option is a fixed price at which the owner of the option can buy, or sell, the underlying security or commodity. The strike price may be set by reference to the spot price, which is the market price of the underlying security or commodity on the day an option is taken out. Alternatively, the strike price may be fixed at a discount or premium.

In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of a derivative instrument such as an option to changes in one or more underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.

In finance, moneyness is the relative position of the current price of an underlying asset with respect to the strike price of a derivative, most commonly a call option or a put option. Moneyness is firstly a three-fold classification:

<span class="mw-page-title-main">Volatility smile</span> Implied volatility patterns that arise in pricing financial options

Volatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices than what is suggested by standard option pricing models. These options are said to be either deep in-the-money or out-of-the-money.

In finance, the intrinsic value of an asset or security is its value as calculated with regard to an inherent, objective measure. A distinction, is re the asset's price, which is determined relative to other similar assets. Note, then, that the intrinsic approach to valuation may be somewhat simplified, in that it ignores elements other than the measure in question.

In finance, a price (premium) is paid or received for purchasing or selling options. This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.

In finance an iron butterfly, also known as the ironfly, is the name of an advanced, neutral-outlook, options trading strategy that involves buying and holding four different options at three different strike prices. It is a limited-risk, limited-profit trading strategy that is structured for a larger probability of earning smaller limited profit when the underlying stock is perceived to have a low volatility.

Option strategies are the simultaneous, and often mixed, buying or selling of one or more options that differ in one or more of the options' variables. Call options, simply known as Calls, give the buyer a right to buy a particular stock at that option's strike price. Opposite to that are Put options, simply known as Puts, which give the buyer the right to sell a particular stock at the option's strike price. This is often done to gain exposure to a specific type of opportunity or risk while eliminating other risks as part of a trading strategy. A very straightforward strategy might simply be the buying or selling of a single option; however, option strategies often refer to a combination of simultaneous buying and or selling of options.

The backspread is the converse strategy to the ratio spread and is also known as reverse ratio spread. Using calls, a bullish strategy known as the call backspread can be constructed and with puts, a strategy known as the put backspread can be constructed.

<span class="mw-page-title-main">Option (finance)</span> Right to buy or sell a certain thing at a later date at an agreed price

In finance, an option is a contract which conveys to its owner, the holder, the right, but not the obligation, to buy or sell a specific quantity of an underlying asset or instrument at a specified strike price on or before a specified date, depending on the style of the option. Options are typically acquired by purchase, as a form of compensation, or as part of a complex financial transaction. Thus, they are also a form of asset and have a valuation that may depend on a complex relationship between underlying asset price, time until expiration, market volatility, the risk-free rate of interest, and the strike price of the option. Options may be traded between private parties in over-the-counter (OTC) transactions, or they may be exchange-traded in live, public markets in the form of standardized contracts.

In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to

<span class="mw-page-title-main">Credit spread (options)</span>

In finance, a credit spread, or net credit spread is an options strategy that involves a purchase of one option and a sale of another option in the same class and expiration but different strike prices. It is designed to make a profit when the spreads between the two options narrows.

<span class="mw-page-title-main">Synthetic position</span>

In finance, a synthetic position is a way to create the payoff of a financial instrument using other financial instruments.

References

  1. Note, however, that there is also a cost component of holding an option (or any asset), based on the time value of money.
  2. "Options Theta". Warsoption. Retrieved 9 March 2021.
  3. Understanding Option Pricing Hans Wagner
  4. Understanding Option Pricing Hans Wagner
  5. Note that the X axis is not time — the graph represents the relationship between price and value at a particular time. With more time left to expiration, the red curve would be higher; the closer to expiration, the more it would approach the blue intrinsic value line.
  6. Option premium valuation 22 August 2007
  7. Options: Time Value, wolfram.com