Fractional dose vaccination

Last updated

Fractional dose vaccination [1] [2] is a strategy to reduce the dose of a vaccine to achieve a vaccination policy goal that is more difficult to achieve with conventional vaccination approaches, including deploying a vaccine faster in a pandemic, [3] reaching more individuals in the setting of limited healthcare budgets, or minimizing side effects due to the vaccine.

Contents

Fractional dose vaccination exploits the nonlinear dose-response characteristics of a vaccine: If two persons can be vaccinated instead of one, but each one gets 2/3 of the protective efficacy, there is a net benefit at society scale for reducing the number of infections. If the healthcare budget is limited or only a limited amount of vaccine is available during the early phase of a pandemic, this can make a difference for the total number of infections.[ citation needed ]

Fractional dose vaccination uses a fraction of the standard dose of a regular vaccine that is administered by the same, or an alternative route (often subcutaneously or intradermally). [4]

Fractional dose vaccination has been used or proposed in a number of relevant infectious poverty diseases including yellow fever, [2] poliomyelitis, [5] COVID-19. [6]

Use

In the context of limited healthcare budgets

During the 2016 yellow fever outbreak in Angola and the Democratic Republic of the Congo, the WHO approved the use of fractional dose vaccination to deal with a potential shortage of vaccine. [7] In August 2016, a large vaccination campaign in Kinshasa used 1/5 of the standard vaccine dose. [8] In 2018 it was reported that fractional dose vaccination with 1/5 of the standard vaccine dose, administered intradermally, conferred protection for 10 years, as documented by a randomized clinical trial. [9]

In Poliomyelitis, fractional dose vaccination has been shown to be effective while reducing overall cost, [10] rendering polio vaccination available to more individuals.

In the Covid-19 pandemic

In a pandemic wave, fractional dose vaccination is considered to accelerate widespread access to vaccination when vaccine supply is limited:

In the COVID-19 pandemic, epidemiologic models predict a major benefit of personalized fractional dose vaccination strategies with certain vaccines in terms of case load, deaths, and shortening of the pandemic. [3] [11]

To reduce side effects

In some segments of the population, disease risk is lower but specific vaccine side effect risks may be increased. [12] In such subpopulations, fractional dose vaccination might optimize the benefit-risk ratio of vaccination for an individuum and optimize the cost-benefit relation for society.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">BCG vaccine</span> Vaccine primarily used against tuberculosis

Bacillus Calmette–Guérin (BCG) vaccine is a vaccine primarily used against tuberculosis (TB). It is named after its inventors Albert Calmette and Camille Guérin. In countries where tuberculosis or leprosy is common, one dose is recommended in healthy babies as soon after birth as possible. In areas where tuberculosis is not common, only children at high risk are typically immunized, while suspected cases of tuberculosis are individually tested for and treated. Adults who do not have tuberculosis and have not been previously immunized, but are frequently exposed, may be immunized, as well. BCG also has some effectiveness against Buruli ulcer infection and other nontuberculous mycobacterial infections. Additionally, it is sometimes used as part of the treatment of bladder cancer.

<span class="mw-page-title-main">Vaccination</span> Administration of a vaccine to protect against disease

Vaccination is the administration of a vaccine to help the immune system develop immunity from a disease. Vaccines contain a microorganism or virus in a weakened, live or killed state, or proteins or toxins from the organism. In stimulating the body's adaptive immunity, they help prevent sickness from an infectious disease. When a sufficiently large percentage of a population has been vaccinated, herd immunity results. Herd immunity protects those who may be immunocompromised and cannot get a vaccine because even a weakened version would harm them. The effectiveness of vaccination has been widely studied and verified. Vaccination is the most effective method of preventing infectious diseases; widespread immunity due to vaccination is largely responsible for the worldwide eradication of smallpox and the elimination of diseases such as polio and tetanus from much of the world. However, some diseases, such as measles outbreaks in America, have seen rising cases due to relatively low vaccination rates in the 2010s – attributed, in part, to vaccine hesitancy. According to the World Health Organization, vaccination prevents 3.5–5 million deaths per year.

<span class="mw-page-title-main">Vaccine</span> Pathogen-derived preparation that provides acquired immunity to an infectious disease

A vaccine is a biological preparation that provides active acquired immunity to a particular infectious or malignant disease. The safety and effectiveness of vaccines has been widely studied and verified. A vaccine typically contains an agent that resembles a disease-causing microorganism and is often made from weakened or killed forms of the microbe, its toxins, or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as a threat, destroy it, and recognize further and destroy any of the microorganisms associated with that agent that it may encounter in the future.

<span class="mw-page-title-main">Polio vaccine</span> Vaccine to prevent poliomyelitis

Polio vaccines are vaccines used to prevent poliomyelitis (polio). Two types are used: an inactivated poliovirus given by injection (IPV) and a weakened poliovirus given by mouth (OPV). The World Health Organization (WHO) recommends all children be fully vaccinated against polio. The two vaccines have eliminated polio from most of the world, and reduced the number of cases reported each year from an estimated 350,000 in 1988 to 33 in 2018.

<span class="mw-page-title-main">Influenza vaccine</span> Vaccine against influenza

Influenza vaccines, colloquially known as flu shots, are vaccines that protect against infection by influenza viruses. New versions of the vaccines are developed twice a year, as the influenza virus rapidly changes. While their effectiveness varies from year to year, most provide modest to high protection against influenza. Vaccination against influenza began in the 1930s, with large-scale availability in the United States beginning in 1945.

<span class="mw-page-title-main">Booster dose</span> Additional administration of vaccine

A booster dose is an extra administration of a vaccine after an earlier (primer) dose. After initial immunization, a booster provides a re-exposure to the immunizing antigen. It is intended to increase immunity against that antigen back to protective levels after memory against that antigen has declined through time. For example, tetanus shot boosters are often recommended every 10 years, by which point memory cells specific against tetanus lose their function or undergo apoptosis.

A vaccination policy is a health policy adopted in order to prevent the spread of infectious disease. These policies are generally put into place by state or local governments, but may also be set by private facilities, such as workplaces or schools. Many policies have been developed and implemented since vaccines were first made widely available.

<span class="mw-page-title-main">Yellow fever vaccine</span> Vaccine that protects against yellow fever

Yellow fever vaccine is a vaccine that protects against yellow fever. Yellow fever is a viral infection that occurs in Africa and South America. Most people begin to develop immunity within ten days of vaccination and 99% are protected within one month, and this appears to be lifelong. The vaccine can be used to control outbreaks of disease. It is given either by injection into a muscle or just under the skin.

<span class="mw-page-title-main">Intradermal injection</span> Medical injection into the dermis

Intradermal injection is a shallow or superficial injection of a substance into the dermis, which is located between the epidermis and the hypodermis. For certain substances, administration via an ID route can result in a faster systemic uptake compared with subcutaneous injections, leading to a stronger immune response to vaccinations, immunology and novel cancer treatments, and faster drug uptake. Additionally, since administration is closer to the surface of the skin, the body's reaction to substances is more easily visible. However, due to complexity of the procedure compared to subcutaneous injection and intramuscular injection, administration via ID is relatively rare, and is only used for tuberculosis and allergy tests, Monkeypox vaccination, and certain therapies.

<span class="mw-page-title-main">Sarah Gilbert</span> English vaccinologist (born 1962)

Dame Sarah Catherine Gilbert FRS is an English vaccinologist who is a Professor of Vaccinology at the University of Oxford and co-founder of Vaccitech. She specialises in the development of vaccines against influenza and emerging viral pathogens. She led the development and testing of the universal flu vaccine, which underwent clinical trials in 2011.

<span class="mw-page-title-main">COVID-19 vaccine</span> Vaccine against SARS-CoV-2

A COVID‑19 vaccine is a vaccine intended to provide acquired immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID‑19).

<span class="mw-page-title-main">COVID-19 in pregnancy</span> Overview about the effects of COVID-19 infection on pregnancy

COVID-19 infection in pregnancy is associated with several pregnancy complications. However, pregnancy does not appear to increase the susceptibility of becoming infected by COVID-19. Recommendations for the prevention of COVID-19 include the same measures as non-pregnant people.

<span class="mw-page-title-main">Oxford–AstraZeneca COVID-19 vaccine</span> Viral vector vaccine for prevention of COVID-19 by Oxford University and AstraZeneca

The Oxford–AstraZeneca COVID‑19 vaccine, sold under the brand names Covishield and Vaxzevria among others, is a viral vector vaccine for the prevention of COVID-19. It was developed in the United Kingdom by Oxford University and British-Swedish company AstraZeneca, using as a vector the modified chimpanzee adenovirus ChAdOx1. The vaccine is given by intramuscular injection. Studies carried out in 2020 showed that the efficacy of the vaccine is 76.0% at preventing symptomatic COVID-19 beginning at 22 days following the first dose and 81.3% after the second dose. A study in Scotland found that, for symptomatic COVID-19 infection after the second dose, the vaccine is 81% effective against the Alpha variant and 61% against the Delta variant.

<span class="mw-page-title-main">CoronaVac</span> Vaccine against COVID-19

CoronaVac, also known as the Sinovac COVID-19 vaccine, is a whole inactivated virus COVID-19 vaccine developed by the Chinese company Sinovac Biotech. It was phase III clinically trialled in Brazil, Chile, Indonesia, the Philippines, and Turkey and relies on traditional technology similar to other inactivated-virus COVID-19 vaccines, such as the Sinopharm BIBP vaccine, another Chinese vaccine, and Covaxin, an Indian vaccine. CoronaVac does not need to be frozen, and both the final product and the raw material for formulating CoronaVac can be transported refrigerated at 2–8 °C (36–46 °F), the temperatures at which flu vaccines are kept.

<span class="mw-page-title-main">Vaccination in Brazil</span>

Vaccination in Brazil includes all the practice and social issues related to vaccines in Brazil.

<span class="mw-page-title-main">Shabir Madhi</span> South African physician and professor

Shabir Ahmed Madhi, is a South African physician who is professor of vaccinology and director of the South African Medical Research Council Respiratory and Meningeal Pathogens Research Unit at the University of the Witwatersrand, and National Research Foundation/Department of Science and Technology Research Chair in Vaccine Preventable Diseases. In January 2021, he was appointed Dean of the Faculty of Health Sciences at the University of the Witwatersrand.

<span class="mw-page-title-main">COVID-19 vaccination in India</span> Immunisation programme against COVID-19 in India

India began administration of COVID-19 vaccines on 16 January 2021. As of 4 March 2023, India has administered over 2.2 billion doses overall, including first, second and precautionary (booster) doses of the currently approved vaccines. In India, 95% of the eligible population (12+) has received at least one shot, and 88% of the eligible population (12+) is fully vaccinated.

<span class="mw-page-title-main">Deployment of COVID-19 vaccines</span> Distribution and administration of COVID-19 vaccinations

As of 3 January 2024, 13.53 billion COVID-19 vaccine doses have been administered worldwide, with 70.6 percent of the global population having received at least one dose. While 4.19 million vaccines were then being administered daily, only 22.3 percent of people in low-income countries had received at least a first vaccine by September 2022, according to official reports from national health agencies, which are collated by Our World in Data.

<span class="mw-page-title-main">ZyCoV-D</span> Vaccine candidate against COVID-19

ZyCoV-D is a DNA plasmid-based COVID-19 vaccine developed by Indian pharmaceutical company Cadila Healthcare, with support from the Biotechnology Industry Research Assistance Council. It is approved for emergency use in India.

<span class="mw-page-title-main">COVID-19 vaccine clinical research</span> Clinical research to establish the characteristics of COVID-19 vaccines

COVID-19 vaccine clinical research uses clinical research to establish the characteristics of COVID-19 vaccines. These characteristics include efficacy, effectiveness, and safety. As of November 2022, 40 vaccines are authorized by at least one national regulatory authority for public use:

References

  1. Chen, Zhimin; Liu, Kaihui; Liu, Xiuxiang; Lou, Yijun (2020-02-07). "Modelling epidemics with fractional-dose vaccination in response to limited vaccine supply". Journal of Theoretical Biology. 486: 110085. doi:10.1016/j.jtbi.2019.110085. hdl: 10397/94076 . ISSN   0022-5193. PMID   31758966. S2CID   208254350.
  2. 1 2 Vannice, Kirsten; Wilder-Smith, Annelies; Hombach, Joachim (2018-08-16). "Fractional-Dose Yellow Fever Vaccination — Advancing the Evidence Base". New England Journal of Medicine. 379 (7): 603–605. doi: 10.1056/NEJMp1803433 . ISSN   0028-4793. PMID   29995585. S2CID   205114579.
  3. 1 2 Hunziker, Patrick (2021-07-24). "Personalized-dose Covid-19 vaccination in a wave of virus Variants of Concern: Trading individual efficacy for societal benefit". Precision Nanomedicine. 4 (3). doi: 10.33218/001c.26101 . ISSN   2639-9431.
  4. Schnyder, Jenny L.; De Pijper, Cornelis A.; Garcia Garrido, Hannah M.; Daams, Joost G.; Goorhuis, Abraham; Stijnis, Cornelis; Schaumburg, Frieder; Grobusch, Martin P. (2020-09-01). "Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination - A systematic review and meta-analysis". Travel Medicine and Infectious Disease. 37: 101868. doi:10.1016/j.tmaid.2020.101868. ISSN   1477-8939. PMC   7474844 . PMID   32898704.
  5. Resik, Sonia; Tejeda, Alina; Sutter, Roland W.; Diaz, Manuel; Sarmiento, Luis; Alemañi, Nilda; Garcia, Gloria; Fonseca, Magilé; Hung, Lai Heng; Kahn, Anna-Lea; Burton, Anthony (2013-01-31). "Priming after a Fractional Dose of Inactivated Poliovirus Vaccine". New England Journal of Medicine. 368 (5): 416–424. doi: 10.1056/NEJMoa1202541 . ISSN   0028-4793. PMID   23363495.
  6. Hunziker, Patrick (2021-03-07). "Vaccination strategies for minimizing loss of life in Covid-19 in a Europe lacking vaccines". medRxiv   10.1101/2021.01.29.21250747v6 .
  7. World Health Organization (2016-07-20). "Fractional dose yellow fever vaccine as a dose-sparing option for outbreak response". WHO Secretariat Information Paper. hdl:10665/246236.
  8. "Millions protected in Africa's largest-ever emergency yellow fever vaccination campaign". WHO News Release. 2 September 2016. Retrieved 2022-06-08.
  9. Roukens, Anna H.E.; van Halem, Karlijn; de Visser, Adriëtte W.; Visser, Leo G. (2018-11-27). "Long-Term Protection After Fractional-Dose Yellow Fever Vaccination". Annals of Internal Medicine. 169 (11): 761–765. doi:10.7326/m18-1529. ISSN   0003-4819. PMID   30476963. S2CID   53737386.
  10. Nelson, Katherine S.; Janssen, Julia M.; Troy, Stephanie B.; Maldonado, Yvonne (2012-01-05). "Intradermal fractional dose inactivated polio vaccine: A review of the literature". Vaccine. 30 (2): 121–125. doi:10.1016/j.vaccine.2011.11.018. ISSN   0264-410X. PMID   22100886.
  11. Hunziker, Patrick (2021-07-24). "Personalized-dose Covid-19 vaccination in a wave of virus Variants of Concern: Trading individual efficacy for societal benefit". Precision Nanomedicine. 4 (3): 805–820. doi: 10.33218/001c.26101 .
  12. Wallace, Megan; Oliver, Sara (2021-06-23). "COVID-19 mRNA vaccines in adolescents and young adults: Benefit-risk discussion" (PDF).