Francesco Lacquaniti | |
---|---|
Born | |
Nationality | Italian |
Alma mater | University of Turin (MD) – 1976 ) University of Turin (Specialty in Neurology) - 1980 |
Known for | Motor coordination |
Awards | National Research Council (Italy) Gradoni Prize (1985) Ig Nobel Prize (2013) Herlitzka International Prize for Physiology (2015) Elected to Academia Europaea (2012) Elected to Consiglio Universitario Nazionale (2015) Doctor Honoris Causa Université catholique de Louvain (2020) |
Scientific career | |
Fields | Neuroscience |
Institutions | University of Turin University of Minnesota Medical School National Research Council (Italy) University of Cagliari University of Rome Tor Vergata |
Francesco Lacquaniti is an Italian neurologist and neuroscientist. He received his medical education and completed his Neurology residency at the University of Turin. [1] He is Professor emeritus of Physiology at the University of Rome Tor Vergata, [2] the Director of the Laboratory of Neuromotor Physiology at Santa Lucia Foundation IRCCS Rome, [3] and the President of the Italian Physiological Society. [4] His research focuses on the laws of movement control in humans and other animals (including the two-thirds Power law, see Penmanship, Motor coordination, Affine curvature) and their development in children and alteration after neurological lesions (Developmental coordination disorder). He also studied the neural representation of spatial information in the brain (Brodmann area 5), the neural representation of gravity effects on the body (Mental model), and how the brain adapts to weightlessness (Locomotion in space). His scientific work has been covered in books [5] [6] [7] [8] and media [9] [10] [11] [12] [13] [14] [15] [16] For his work, he received the Herlitzka International Prize for Physiology, [17] was elected to the Consiglio Universitario Nazionale, [18] was elected to the Academia Europaea, [19] and received a Honorary Degree in Neurosciences from the Université Catholique de Louvain [20]
Neuroscience is the scientific study of the nervous system, its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.
A gait is a manner of limb movements made during locomotion. Human gaits are the various ways in which humans can move, either naturally or as a result of specialized training. Human gait is defined as bipedal forward propulsion of the center of gravity of the human body, in which there are sinuous movements of different segments of the body with little energy spent. Various gaits are characterized by differences in limb movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in contact with the ground.
The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the subthalamic nucleus is located ventral to the thalamus. It is also dorsal to the substantia nigra and medial to the internal capsule. It was first described by Jules Bernard Luys in 1865, and the term corpus Luysi or Luys' body is still sometimes used.
Knuckle-walking is a form of quadrupedal walking in which the forelimbs hold the fingers in a partially flexed posture that allows body weight to press down on the ground through the knuckles. Gorillas and chimpanzees use this style of locomotion, as do anteaters and platypuses.
Central pattern generators (CPGs) are self-organizing biological neural circuits that produce rhythmic outputs in the absence of rhythmic input. They are the source of the tightly-coupled patterns of neural activity that drive rhythmic and stereotyped motor behaviors like walking, swimming, breathing, or chewing. The ability to function without input from higher brain areas still requires modulatory inputs, and their outputs are not fixed. Flexibility in response to sensory input is a fundamental quality of CPG-driven behavior. To be classified as a rhythmic generator, a CPG requires:
In physiology, motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking. This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in the intended movement. The modifications of these parameters typically relies on sensory feedback from one or more sensory modalities, such as proprioception and vision.
The olfactory tubercle (OT), also known as the tuberculum olfactorium, is a multi-sensory processing center that is contained within the olfactory cortex and ventral striatum and plays a role in reward cognition. The OT has also been shown to play a role in locomotor and attentional behaviors, particularly in relation to social and sensory responsiveness, and it may be necessary for behavioral flexibility. The OT is interconnected with numerous brain regions, especially the sensory, arousal, and reward centers, thus making it a potentially critical interface between processing of sensory information and the subsequent behavioral responses.
From the ancient Egyptian mummifications to 18th-century scientific research on "globules" and neurons, there is evidence of neuroscience practice throughout the early periods of history. The early civilizations lacked adequate means to obtain knowledge about the human brain. Their assumptions about the inner workings of the mind, therefore, were not accurate. Early views on the function of the brain regarded it to be a form of "cranial stuffing" of sorts. In ancient Egypt, from the late Middle Kingdom onwards, in preparation for mummification, the brain was regularly removed, for it was the heart that was assumed to be the seat of intelligence. According to Herodotus, during the first step of mummification: "The most perfect practice is to extract as much of the brain as possible with an iron hook, and what the hook cannot reach is mixed with drugs." Over the next five thousand years, this view came to be reversed; the brain is now known to be the seat of intelligence, although colloquial variations of the former remain as in "memorizing something by heart".
Giacomo Rizzolatti is an Italian neurophysiologist who works at the University of Parma. Born in Kyiv, UkSSR, he is the Senior Scientist of the research team that discovered mirror neurons in the frontal and parietal cortex of the macaque monkey, and has written many scientific articles on the topic. He also proposed the premotor theory of attention. He is a past president of the European Brain and Behaviour Society. Rizzolatti was the 2007 co-recipient, with Leonardo Fogassi and Vittorio Gallese, for the University of Louisville Grawemeyer Award for Psychology. He is an elected member of the Academia Europaea, National Academy of Sciences, and Royal Society In 2020 he adheres to Empathism.
The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.
Spinal locomotion results from intricate dynamic interactions between a central program in lower thoracolumbar spine and proprioceptive feedback from body in the absence of central control by brain as in complete spinal cord injury (SCI). Following SCI, the spinal circuitry below the lesion site does not become silent; rather, it continues to maintain active and functional neuronal properties, although in a modified manner.
Space neuroscience or astroneuroscience is the scientific study of the central nervous system (CNS) functions during spaceflight. Living systems can integrate the inputs from the senses to navigate in their environment and to coordinate posture, locomotion, and eye movements. Gravity has a fundamental role in controlling these functions. In weightlessness during spaceflight, integrating the sensory inputs and coordinating motor responses is harder to do because gravity is no longer sensed during free-fall. For example, the otolith organs of the vestibular system no longer signal head tilt relative to gravity when standing. However, they can still sense head translation during body motion. Ambiguities and changes in how the gravitational input is processed can lead to potential errors in perception, which affects spatial orientation and mental representation. Dysfunctions of the vestibular system are common during and immediately after spaceflight, such as space motion sickness in orbit and balance disorders after return to Earth.
The Golgi tendon organ (GTO) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a muscle and its tendon known as the musculotendinous junction also known as the myotendinous junction. It provides the sensory component of the Golgi tendon reflex.
Locomotion in space includes all actions or methods used to move one's body in microgravity conditions through the outer space environment. Locomotion in these conditions is different from locomotion in a gravitational field. There are many factors that contribute to these differences, and they are crucial when researching long-term survival of humans in space.
The mesencephalic locomotor region (MLR) is a functionally defined area of the midbrain that is associated with the initiation and control of locomotor movements in vertebrate species.
Ole Kiehn is a Danish-Swedish neuroscientist. He is Professor of Integrative Neuroscience at the Department of Neuroscience, University of Copenhagen, Denmark, and professor of neurophysiology at Karolinska Institute, Sweden.
Giovanni Cavagna is a physiologist and Emeritus Professor of Human Physiology at the University of Milan. His research focuses on muscle physiology, biomechanical principles of terrestrial locomotion in humans and other animals, from walking to running. He also studied specialized locomotion styles in Luo and Kikuyu women carrying heavy loads on their head with low metabolic cost, as well as locomotion during parabolic flight simulating Martian gravity. The New Scientist and the Discover magazine covered his discoveries about the mechanisms of imperfect pendular exchange between gravitational potential energy and kinetic energy of the center of body mass. The New York Times reported about his work on backward running, which can potentially improve forward running by allowing greater and safer training. For his work, he received a Honorary Medical Degree from the Université Catholique de Louvain in 1994 and the Feltrinelli Prize for Medicine from the Accademia dei Lincei in 2000. He has published several widely cited papers and the book “Fundamentals of human physiology”.
Grégoire Courtine is a French neuroscientist and a professor at the École Polytechnique Fédérale de Lausanne (EPFL), where he is the co-director of the Defitech center for interventional neurotherapies (NeuroRestore). His research focuses on the field of neurotechnology, with the aim to restore locomotor functions in patients with central nervous system disorders such as spinal cord injuries.
A descending neuron is a neuron that conveys signals from the brain to neural circuits in the spinal cord (vertebrates) or ventral nerve cord (invertebrates). As the sole conduits of information between the brain and the body, descending neurons play a key role in behavior. Their activity can initiate, maintain, modulate, and terminate behaviors such as locomotion. Because the number of descending neurons is several orders of magnitude smaller than the number of neurons in either the brain or spinal cord/ventral nerve cord, this class of cells represents a critical bottleneck in the flow of information from sensory systems to motor circuits.
Giovanni Berlucchi is an Italian physiologist, academic, and author. He is a professor Emeritus at the Department of Neurosciences, Biomedicine, and Movement Sciences at the University of Verona.