This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2012) |
Names | |
---|---|
IUPAC name Calcium chloroaluminate | |
Other names Friedel's salt Calcium aluminium chlorohydrate Contents | |
Identifiers | |
Properties | |
Ca2Al(OH)6(Cl, OH) · 2 H2O | |
Appearance | White solid |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Friedel's salt is an anion exchanger mineral belonging to the family of the layered double hydroxides (LDHs). It has affinity for anions as chloride and iodide and is capable of retaining them to a certain extent in its crystallographical structure.
Friedel's salt is a layered double hydroxide (LDH) of general formula:
or more explicitly for a positively-charged LDH mineral:
or by directly incorporating water molecules into the Ca,Al hydroxide layer:
where chloride and hydroxide anions occupy the interlayer to compensate the excess of positive charges.
In the cement chemist notation (CCN), considering that
and doubling all the stoichiometry, it could also be written in CCN as follows:
A simplified chemical composition with only Cl– in the interlayer, and without OH–, as:
can be also written in cement chemist notation as: [1]
Friedel's salt is formed in cements initially rich in tri-calcium aluminate (C3A). Free-chloride ions directly bind with the AFm hydrates (C4AH13 and its derivatives) to form Friedel's salt.
Friedel's salt plays a main role in the binding and retention of chloride anions in cement and concrete. However, Friedel's salt remains a poorly understood phase in the CaO–Al2O3–CaCl2–H2O system. A sufficient understanding of the Friedel's salt system is essential to correctly model the reactive transport of chloride ions in reinforced concrete structures affected by chloride attack and steel reinforcement corrosion. It is also important to assess the long-term stability of salt-saturated Portland cement-based grouts to be used in engineering structures exposed to seawater or concentrated brine as it is the case for radioactive waste disposal in deep salt formations.
Another reason to study AFm phases and the Friedel's salt system is their tendency to bind, trap and to immobilise toxic anions, such as B(OH)−4, SeO2−
3, and SeO2−
4, or the long-lived radionuclide 129I−, in cementitious materials. Their characterization is important to conceive anion getters and to assess the retention capacity of cementitious buffer and concrete barriers used for radioactive waste disposal.
Friedel's salt could be first tentatively represented as an AFm phase in which two chloride ions would have simply replaced one sulfate ion. This conceptual representation based on the intuition of a simple stoichiometric exchange is very convenient to remind but such a simple mechanism likely does not directly occur and must be considered with caution:
Indeed, the reality appears to be more complex than such a simple stoichiometric exchange between chloride and sulfate ions in the AFm crystal structure. In fact, it seems that chloride ions are electrostatically sorbed onto the positively charged [Ca2Al(OH)6 · 2H2O]+ layer of AFm hydrate, or could also exchange with hydroxide ions (OH–) also present in the interlayer. So, the simple and "apparent" exchange reaction first presented here above for the sake of ease does not correspond to the reality and is an oversimplified representation. [2]
Similarly, Kuzel’s salt could seem to be formed when only 1 Cl– ion exchanges with 1/2SO2−
4 in AFm (half substitution of sulfate ions): [3]
Glasser et al. (1999) proposed to name this half-substituted salt in honor of his discoverer: Hans-Jürgen Kuzel. [4]
However, Mesbah et al. (2011) have identified two different types of interlayers in the crystallographic structure they have determined and it precludes the common anion exchange reaction presented here above as stated by the authors themselves in their conclusions: [3]
Kuzel's salt is a two-stage layered compound with two distinct interlayers, which are alternatively filled by chloride anions only (for one kind of interlayer) and by sulfate anions and water molecules (for the other kind of interlayer). Kuzel's salt structure is composed of the perfect intercalation of the Friedel's salt structure and the monosulfoaluminate structure (the two end-members of the studied bi-anionic AFm compound). The structural properties of Kuzel's salt explain the absence of extended chloride to sulfate or sulfate to chloride substitution.
The staging feature of Kuzel's salt certainly explains the difficulties to substitute chloride and sulfate: the modification in one kind of interlayer involves a modification in the other kind of interlayer in order to preserve the electroneutrality of the compound. The two-stage feature of Kuzel's salt implies that each interlayer should be mono-anionic.
So, if the global chemical composition of Friedel's salt and Kuzel's salt corresponds well respectively with the stoichiometry of a complete substitution, or a half substitution, of sulfate ions by chloride ions in the crystal structure of AFm, it does not tell directly anything on the exact mechanism of anion substitution in this complicated system. Only detailed and well controlled chloride sorption, or anion exchange, experiments with a complete analysis of all the dissolved species present in aqueous solution (also including OH–, Na+ and Ca2+ ions) can decipher the system.
Friedel's salt discovery is relatively difficult to trace back from the recent literature, simply because it is an ancient finding of a poorly known and non-natural product. It has been synthesised and identified in 1897 by Georges Friedel, mineralogist and crystallographer, son of the famous French chemist Charles Friedel. [5] Georges Friedel also synthesised calcium aluminate (1903) in the framework of his work on the macles theory (twin crystals). This point requires further verification.[ citation needed ] [6]
In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions.
Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed with water. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.
Magnesium chloride is an inorganic compound with the formula MgCl2. It forms hydrates MgCl2·nH2O, where n can range from 1 to 12. These salts are colorless or white solids that are highly soluble in water. These compounds and their solutions, both of which occur in nature, have a variety of practical uses. Anhydrous magnesium chloride is the principal precursor to magnesium metal, which is produced on a large scale. Hydrated magnesium chloride is the form most readily available.
Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2. It forms hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.
Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.
Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.
Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.
Ettringite is a hydrous calcium aluminium sulfate mineral with formula: Ca6Al2(SO4)3(OH)12·26H2O. It is a colorless to yellow mineral crystallizing in the trigonal system. The prismatic crystals are typically colorless, turning white on partial dehydration. It is part of the ettringite-group which includes other sulfates such as thaumasite and bentorite.
Tricalcium aluminate Ca3Al2O6, often formulated as 3CaO·Al2O3 to highlight the proportions of the oxides from which it is made, is the most basic of the calcium aluminates. It does not occur in nature, but is an important mineral phase in Portland cement.
An AFm phase is an "alumina, ferric oxide, monosubstituted" phase, or aluminate ferrite monosubstituted, or Al2O3, Fe2O3 mono, in cement chemist notation (CCN). AFm phases are important hydration products in the hydration of Portland cements and hydraulic cements.
Thaumasite is a calcium silicate mineral, containing Si atoms in unusual octahedral configuration, with chemical formula Ca3Si(OH)6(CO3)(SO4)·12H2O, also sometimes more simply written as CaSiO3·CaCO3·CaSO4·15H2O.
The alkali–silica reaction (ASR), also commonly known as concrete cancer, is a deleterious swelling reaction that occurs over time in concrete between the highly alkaline cement paste and the reactive amorphous silica found in many common aggregates, given sufficient moisture.
Calcium silicate hydrates are the main products of the hydration of Portland cement and are primarily responsible for the strength of cement-based materials. They are the main binding phase in most concrete. Only well defined and rare natural crystalline minerals can be abbreviated as CSH while extremely variable and poorly ordered phases without well defined stoichiometry, as it is commonly observed in hardened cement paste (HCP), are denoted C-S-H.
Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damages are caused by the formation of expansive products produced by various chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms. Other damaging processes can also involve calcium leaching by water infiltration and different physical phenomena initiating cracks formation and propagation. All these detrimental processes and damaging agents adversely affects the concrete mechanical strength and its durability.
The pozzolanic activity is a measure for the degree of reaction over time or the reaction rate between a pozzolan and Ca2+ or calcium hydroxide (Ca(OH)2) in the presence of water. The rate of the pozzolanic reaction is dependent on the intrinsic characteristics of the pozzolan such as the specific surface area, the chemical composition and the active phase content.
Calcium nitrite is an inorganic compound with the chemical formula Ca(NO
2)
2. In this compound, as in all nitrites, nitrogen is in a +3 oxidation state. It has many applications such as antifreeze, rust inhibitor of steel and wash heavy oil.
Magnesium hydroxychloride is the traditional term for several chemical compounds of magnesium, chlorine, oxygen, and hydrogen whose general formula xMgO·yMgCl
2·zH
2O, for various values of x, y, and z; or, equivalently, Mg
x+y(OH)
2xCl
2y(H
2O)
z−x. The simple chemical formula that is often used is MgClOH, which appears in high school subject, for example.Other names for this class are magnesium chloride hydroxide, magnesium oxychloride, and basic magnesium chloride. Some of these compounds are major components of Sorel cement.
Cement hydration and strength development mainly depend on two silicate phases: tricalcium silicate (C3S) (alite), and dicalcium silicate (C2S) (belite). Upon hydration, the main reaction products are calcium silicate hydrates (C-S-H) and calcium hydroxide Ca(OH)2, written as CH in the cement chemist notation. C-S-H is the phase playing the role of the glue in the cement hardened paste and responsible of its cohesion. Cement also contains two aluminate phases: C3A and C4AF, respectively the tricalcium aluminate and the tetracalcium aluminoferrite. C3A hydration products are AFm, calcium aluminoferrite monosulfate, and ettringite, a calcium aluminoferrite trisulfate (AFt). C4AF hydrates as hydrogarnet and ferrous ettringite.
AFt Phases refer to the calcium Aluminate Ferrite trisubstituted, or calcium aluminate trisubstituted, phases present in hydrated cement paste (HCP) in concrete.