Fuchs relation

Last updated

In mathematics, the Fuchs relation is a relation between the starting exponents of formal series solutions of certain linear differential equations, so called Fuchsian equations. It is named after Lazarus Immanuel Fuchs.

Contents

Definition Fuchsian equation

A linear differential equation in which every singular point, including the point at infinity, is a regular singularity is called Fuchsian equation or equation of Fuchsian type. [1] For Fuchsian equations a formal fundamental system exists at any point, due to the Fuchsian theory.

Coefficients of a Fuchsian equation

Let be the regular singularities in the finite part of the complex plane of the linear differential equation

with meromorphic functions . For linear differential equations the singularities are exactly the singular points of the coefficients. is a Fuchsian equation if and only if the coefficients are rational functions of the form

with the polynomial and certain polynomials for , such that . [2] This means the coefficient has poles of order at most , for .

Fuchs relation

Let be a Fuchsian equation of order with the singularities and the point at infinity. Let be the roots of the indicial polynomial relative to , for . Let be the roots of the indicial polynomial relative to , which is given by the indicial polynomial of transformed by at . Then the so called Fuchs relation holds:

. [3]

The Fuchs relation can be rewritten as infinite sum. Let denote the indicial polynomial relative to of the Fuchsian equation . Define as

where gives the trace of a polynomial , i. e., denotes the sum of a polynomial's roots counted with multiplicity.

This means that for any ordinary point , due to the fact that the indicial polynomial relative to any ordinary point is . The transformation , that is used to obtain the indicial equation relative to , motivates the changed sign in the definition of for . The rewritten Fuchs relation is:

[4]

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Dirac delta function</span> Pseudo-function δ such that an integral of δ(x-c)f(x) always takes the value of f(c)

In mathematics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a polynomial of degree k, called the kth-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order k of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , , or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field, and is an example of a self-dual topological ring.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces, and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In mathematics, the Todd class is a certain construction now considered a part of the theory in algebraic topology of characteristic classes. The Todd class of a vector bundle can be defined by means of the theory of Chern classes, and is encountered where Chern classes exist — most notably in differential topology, the theory of complex manifolds and algebraic geometry. In rough terms, a Todd class acts like a reciprocal of a Chern class, or stands in relation to it as a conormal bundle does to a normal bundle.

In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, where the derivation is differentiation with respect to

In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

<span class="mw-page-title-main">Generalized Pareto distribution</span> Family of probability distributions often used to model tails or extreme values

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape . Sometimes it is specified by only scale and shape and sometimes only by its shape parameter. Some references give the shape parameter as .

In mathematics, the symbol of a linear differential operator is a polynomial representing a differential operator, which is obtained, roughly speaking, by replacing each partial derivative by a new variable. The symbol of a differential operator has broad applications to Fourier analysis. In particular, in this connection it leads to the notion of a pseudo-differential operator. The highest-order terms of the symbol, known as the principal symbol, almost completely controls the qualitative behavior of solutions of a partial differential equation. Linear elliptic partial differential equations can be characterized as those whose principal symbol is nowhere zero. In the study of hyperbolic and parabolic partial differential equations, zeros of the principal symbol correspond to the characteristics of the partial differential equation. Consequently, the symbol is often fundamental for the solution of such equations, and is one of the main computational devices used to study their singularities.

In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process. The generator is used in evolution equations such as the Kolmogorov backward equation ; its L2 Hermitian adjoint is used in evolution equations such as the Fokker–Planck equation.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle (TTM,πTTM,TM) of the total space TM of the tangent bundle (TM,πTM,M) of a smooth manifold M . A note on notation: in this article, we denote projection maps by their domains, e.g., πTTM : TTMTM. Some authors index these maps by their ranges instead, so for them, that map would be written πTM.

Quantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories. The knowledge of quantum characteristics is equivalent to the knowledge of quantum dynamics.

The Fuchsian theory of linear differential equations, which is named after Lazarus Immanuel Fuchs, provides a characterization of various types of singularities and the relations among them.

References

  1. Ince, Edward Lindsay (1956). Ordinary Differential Equations. New York, USA: Dover Publications. p. 370. ISBN   9780486158211.
  2. Horn, Jakob (1905). Gewöhnliche Differentialgleichungen beliebiger Ordnung. Leipzig, Germany: G. J. Göschensche Verlagshandlung. p. 169.
  3. Ince, Edward Lindsay (1956). Ordinary Differential Equations. New York, USA: Dover Publications. p. 371. ISBN   9780486158211.
  4. Landl, Elisabeth (2018). The Fuchs Relation (Bachelor Thesis). Linz, Austria. chapter 3.