Fuel cell auxiliary power unit

Last updated

A fuel cell auxiliary power unit (FC-APU) is a fuel cell based auxiliary power unit on a vehicle that provides energy for functions other than propulsion. They are mainly used in trucking, aviation, marine and recreational vehicles. [1]

Contents

Market

In 2010 there were globally 3,100 fuel cell APU shipments. [2]

Trucks

Around 300,000 refrigerator trucks with auxiliary power units are on the road in the United States. [3] In recent years, truck and fuel cell manufacturers have teamed up to create, test and demonstrate a fuel cell APU that eliminates nearly all emissions [4] and uses diesel fuel more efficiently. [5] In 2008, a DOE sponsored partnership between Delphi Electronics and Peterbilt demonstrated that a fuel cell could provide power to the electronics and air conditioning of a Peterbilt Model 386 under simulated "idling" conditions for 10 hours. [6] Delphi has said the 5 kW system for Class 8 trucks will be released in 2012,[ needs update ] at an $8000–9000 price tag that would be competitive with other "midrange" two-cylinder diesel APUs, should they be able to meet those deadlines and cost estimates. [5]

Research

See also

Related Research Articles

<span class="mw-page-title-main">Fuel cell</span> Device that converts the chemical energy from a fuel into electricity

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

<span class="mw-page-title-main">Locomotive</span> Self-propelled railway vehicle

A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight.

<span class="mw-page-title-main">Auxiliary power</span>

Auxiliary power is electric power that is provided by an alternate source and that serves as backup for the primary power source at the station main bus or prescribed sub-bus.

<span class="mw-page-title-main">Auxiliary power unit</span> Alternative vehicle power source

An auxiliary power unit (APU) is a device on a vehicle that provides energy for functions other than propulsion. They are commonly found on large aircraft and naval ships as well as some large land vehicles. Aircraft APUs generally produce 115 V AC voltage at 400 Hz, to run the electrical systems of the aircraft; others can produce 28 V DC voltage. APUs can provide power through single or three-phase systems.

<span class="mw-page-title-main">Hybrid vehicle</span> Vehicle using two or more power sources

A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids.

A hydrogen vehicle is a vehicle that uses hydrogen fuel for motive power. Hydrogen vehicles include hydrogen-fueled space rockets, as well as ships and aircraft. Power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by burning hydrogen in an internal combustion engine.

<span class="mw-page-title-main">Electric vehicle</span> Vehicle propelled by one or more electric motors

An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery. EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft. For road vehicles, together with other emerging automotive technologies such as autonomous driving, connected vehicles and shared mobility, EVs form a future mobility vision called Connected, Autonomous, Shared and Electric (CASE) Mobility.

<span class="mw-page-title-main">Fuel efficiency</span> Form of thermal efficiency

Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, which in turn may vary per application, and this spectrum of variance is often illustrated as a continuous energy profile. Non-transportation applications, such as industry, benefit from increased fuel efficiency, especially fossil fuel power plants or industries dealing with combustion, such as ammonia production during the Haber process.

<span class="mw-page-title-main">Fuel cell vehicle</span> Vehicle that uses a fuel cell to power its electric motor

A fuel cell vehicle (FCV) or fuel cell electric vehicle (FCEV) is an electric vehicle that uses a fuel cell, sometimes in combination with a small battery or supercapacitor, to power its onboard electric motor. Fuel cells in vehicles generate electricity generally using oxygen from the air and compressed hydrogen. Most fuel cell vehicles are classified as zero-emissions vehicles that emit only water and heat. As compared with internal combustion vehicles, hydrogen vehicles centralize pollutants at the site of the hydrogen production, where hydrogen is typically derived from reformed natural gas. Transporting and storing hydrogen may also create pollutants.

<span class="mw-page-title-main">Electro-diesel locomotive</span> Railway locomotive capable of running either under electrical or diesel power

An electro-diesel locomotive is a type of locomotive that can be powered either from an electricity supply or by using the onboard diesel engine. For the most part, these locomotives are built to serve regional, niche markets with a very specific purpose.

Shore power or shore supply is the provision of shoreside electrical power to a ship at berth while its main and auxiliary engines are shut down. While the term denotes shore as opposed to off-shore, it is sometimes applied to aircraft or land-based vehicles, which may plug into grid power when parked for idle reduction.

Hybrid vehicle drivetrains transmit power to the driving wheels for hybrid vehicles. A hybrid vehicle has multiple forms of motive power.

A hybrid train is a locomotive, railcar or train that uses an onboard rechargeable energy storage system (RESS), placed between the power source and the traction transmission system connected to the wheels. Since most diesel locomotives are diesel-electric, they have all the components of a series hybrid transmission except the storage battery, making this a relatively simple prospect.

<span class="mw-page-title-main">Hybrid electric vehicle</span> Type of hybrid vehicle and electric vehicle

A hybrid electric vehicle (HEV) is a type of hybrid vehicle that combines a conventional internal combustion engine (ICE) system with an electric propulsion system. The presence of the electric powertrain is intended to achieve either better fuel economy than a conventional vehicle or better performance. There is a variety of HEV types and the degree to which each function as an electric vehicle (EV) also varies. The most common form of HEV is the hybrid electric car, although hybrid electric trucks, buses, boats and aircraft also exist.

<span class="mw-page-title-main">Alternative fuel vehicle</span> Type of vehicle

An alternative fuel vehicle is a motor vehicle that runs on alternative fuel rather than traditional petroleum fuels. The term also refers to any technology powering an engine that does not solely involve petroleum. Because of a combination of factors, such as environmental concerns, high oil-prices and the potential for peak oil, development of cleaner alternative fuels and advanced power systems for vehicles has become a high priority for many governments and vehicle manufacturers around the world.

<span class="mw-page-title-main">Refrigerator truck</span> Vehicle for low-temperature freight

A refrigerator truck or chiller lorry is a van or truck designed to carry perishable freight at low temperatures. Most long-distance refrigerated transport by truck is done in articulated trucks pulling refrigerated semi-trailers. Sometimes they are used to carry dead human beings.

<span class="mw-page-title-main">Idle reduction</span>

Idle reduction describes technologies and practices that minimize the amount of time drivers idle their engines. Avoiding idling time has a multitude of benefits including: savings in fuel and maintenance costs, extending vehicle life, and reducing damaging emissions. An idling engine consumes only enough power to keep itself and its accessories running, therefore, producing no usable power to the drive train.

<span class="mw-page-title-main">Reformed methanol fuel cell</span> Fuel Cell Type

Reformed Methanol Fuel Cell (RMFC) or Indirect Methanol Fuel Cell (IMFC) systems are a subcategory of proton-exchange fuel cells where, the fuel, methanol (CH3OH), is reformed, before being fed into the fuel cell.

<span class="mw-page-title-main">Hydrail</span>

In transportation, hydrail is the generic term describing all forms of rail vehicles, large or small, which use on-board hydrogen fuel as a source of energy to power the traction motors, or the auxiliaries, or both. Hydrail vehicles use the chemical energy of hydrogen for propulsion, either by burning hydrogen in a hydrogen internal combustion engine, or by reacting hydrogen with oxygen in a fuel cell to run electric motors. Widespread use of hydrogen for fueling rail transportation is a basic element of the proposed hydrogen economy. The term has been used by research scholars and technicians around the world.

<span class="mw-page-title-main">Range extender</span>

A range extender is a fuel-based auxiliary power unit (APU) that extends the range of a battery electric vehicle by driving an electric generator that charges the vehicle's battery. This arrangement is known as a series hybrid drivetrain. The most commonly used range extenders are internal combustion engines, but fuel-cells or other engine types can be used.

References

  1. fuel cells for auxiliary power unit applications Archived 2013-12-03 at the Wayback Machine
  2. "Investment in fuel cells for auxiliary power unit applications to reach $400 million by 2020, according to Pike research". Archived from the original on 2013-12-03. Retrieved 2013-11-28.
  3. Refrigerated trucks to keep their cool thanks to fuel cell technology
  4. Broderick, Christie-Joy; Timothy Lipman; Mohammad Farshchi; Nicholas Lutsey; Harry Dwyer; Daniel Sperling; William Gouse; Bruce Harris; Foy King (2002). "Evaluation of Fuel Cell auxiliary Power Units for Heavy-Duty Diesel Trucks" (PDF). Transportation Research Part D. Elsevier Sciences Ltd. pp. 303–315. Archived from the original (PDF) on 2012-04-03. Retrieved 2011-09-27.
  5. 1 2 Weissler, Paul (2010-05-12). "Delphi truck fuel-cell APU to hit road in 2012". Vehicle Electrification. Archived from the original on 2016-05-28. Retrieved 2011-09-27. and Delphi says it will have a 5-kW APU on the market in 2012.
  6. Jacobs, Mike (2009-03-19). "Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test". NETL: News Release. National Energy Technology Laboratory. Retrieved 2011-09-27.
  7. Fuel cell assisted APU system for diesel-electric locomotives
  8. PowerCell unveils 3kW PowerPac fuel cell APU that converts diesel into electricity