GAMMA

Last updated
GAMMA Experiment. Gamma Experiment diagrammatic layout.png
GAMMA Experiment.

The GAMMA experiment is a study of:

The GAMMA experiment is deployed on the South side of Mount Aragats in Armenia (Cosmic-ray observatory) and operated by the Cosmic Ray Division of the Yerevan Physics Institute. [5] [6] The facility consists of a ground-based extensive air shower (EAS) array of 33 surface detection stations and 150 underground muon detectors. The elevation of the GAMMA facility is 3200 m above sea level, which corresponds to about 700 g/cm2 of atmospheric depth. The surface stations of the EAS array are arranged in 5 concentric circles of 20, 28, 50, 70, and 100 m radii, and each station contains 3 plastic scintillation detectors with the dimensions of 1 m × 1 m × 0.05 m. 9 central detector stations contain an additional small scintillator with dimensions 0.3 m × 0.3 m × 0.05 m for high particle density (much greater than 100 particles/m2) measurements. A photomultiplier tube is placed on the top of the aluminum casing covering each scintillator. One of three detectors of each station is viewed by two photomultipliers, one of which is designed for fast timing measurements. 150 underground muon detectors are compactly arranged in the underground hall under 2.3 kg/cm2 of concrete and rock providing the detection of shower muons with energy greater than 5  GeV.

The results of GAMMA experiment for 2004–2010 runs are presented in references below . [7]

Related Research Articles

<span class="mw-page-title-main">Cosmic ray</span> High-energy particle, mainly originating outside the Solar system

Cosmic rays or astroparticles are high-energy particles or clusters of particles that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk are deflected off into space by the magnetosphere or the heliosphere.

<span class="mw-page-title-main">Neutrino astronomy</span> Observing low-mass stellar particles

Neutrino astronomy is the branch of astronomy that gathers information about astronomical objects by observing and studying neutrinos emitted by them with the help of neutrino detectors in special Earth observatories. It is an emerging field in astroparticle physics providing insights into the high-energy and non-thermal processes in the universe.

<span class="mw-page-title-main">HEGRA</span>

HEGRA, which stands for High-Energy-Gamma-Ray Astronomy, was an atmospheric Cherenkov telescope for Gamma-ray astronomy. With its various types of detectors, HEGRA took data between 1987 and 2002, at which point it was dismantled in order to build its successor, MAGIC, at the same site.

<span class="mw-page-title-main">Air shower (physics)</span> Cascade of atmospheric subatomic particles

Air showers are extensive cascades of subatomic particles and ionized nuclei, produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle of the cosmic radiation, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, interacts with the nucleus of a molecule in the atmosphere, it produces a vast number of secondary particles, which make up the shower. In the first interactions of the cascade especially hadrons are produced and decay rapidly in the air, producing other particles and electromagnetic radiation, which are part of the shower components. Depending on the energy of the cosmic ray, the detectable size of the shower can reach several kilometers in diameter.

The Chicago Air Shower Array (CASA) was a significant ultra high high-energy astrophysics experiment operating in the 1990s. It consisted of a very large array of scintillation detectors located at Dugway Proving Grounds in Utah, USA, approximately 80 kilometers southwest of Salt Lake City. The full CASA detector, consisting of 1089 detectors began operating in 1992 in conjunction with a second instrument, the Michigan Muon Array (MIA), under the name CASA-MIA. MIA was made of 2500 square meters of buried muon detectors. At the time of its operation, CASA-MIA was the most sensitive experiment built to date in the study of gamma ray and cosmic ray interactions at energies above 100 TeV (1014 electronvolts). Research topics on data from this experiment covered a wide variety of physics issues, including the search for gamma rays from Galactic sources (especially the Crab Nebula and the X-ray binaries Cygnus X-3 and Hercules X-1) and extragalactic sources (active Galactic nuclei and gamma-ray bursts), the study of diffuse gamma-ray emission (an isotropic component or from the Galactic plane), and measurements of the cosmic ray composition in the region from 100 to 100,000 TeV. For the topic of composition, CASA-MIA worked in conjunction with several other experiments at the same site: the Broad Laterial Non-imaging Cherenkov Array (BLANCA), the Dual Imaging Cherenkov Experiment (DICE) and the Fly's Eye HiRes prototype experiment. CASA-MIA operated continuously between 1992 and 1999. In summer 1999, it was decommissioned.

<span class="mw-page-title-main">Pierre Auger Observatory</span> International cosmic ray observatory in Argentina

The Pierre Auger Observatory is an international cosmic ray observatory in Argentina designed to detect ultra-high-energy cosmic rays: sub-atomic particles traveling nearly at the speed of light and each with energies beyond 1018 eV. In Earth's atmosphere such particles interact with air nuclei and produce various other particles. These effect particles (called an "air shower") can be detected and measured. But since these high energy particles have an estimated arrival rate of just 1 per km2 per century, the Auger Observatory has created a detection area of 3,000 km2 (1,200 sq mi)—the size of Rhode Island, or Luxembourg—in order to record a large number of these events. It is located in the western Mendoza Province, Argentina, near the Andes.

<span class="mw-page-title-main">IceCube Neutrino Observatory</span> Neutrino detector at the South Pole

The IceCube Neutrino Observatory is a neutrino observatory developed by the University of Wisconsin–Madison and constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometer.

<span class="mw-page-title-main">MINOS</span> Particle physics experiment

Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI beamline at Fermilab near Chicago are observed at two detectors, one very close to where the beam is produced, and another much larger detector 735 km away in northern Minnesota.

<span class="mw-page-title-main">IACT</span> Device to detect very-high-energy gamma ray photons

IACT stands for imaging atmosphericCherenkov telescope or technique. It is a device or method to detect very-high-energy gamma ray photons in the photon energy range of 50 GeV to 50 TeV.

<span class="mw-page-title-main">Neutrino detector</span> Physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".

<span class="mw-page-title-main">GRAPES-3</span>

The GRAPES-3 experiment located at Ooty in India started as a collaboration of the Indian Tata Institute of Fundamental Research and the Japanese Osaka City University, and now also includes the Japanese Nagoya Women's University.

<span class="mw-page-title-main">DEAP</span> Dark matter search experiment

DEAP is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse-shape of argon. A first-generation detector (DEAP-1) with a 7 kg target mass was operated at Queen's University to test the performance of pulse-shape discrimination at low recoil energies in liquid argon. DEAP-1 was then moved to SNOLAB, 2 km below Earth's surface, in October 2007 and collected data into 2011.

<span class="mw-page-title-main">LHCf experiment</span>

The LHCf is a special-purpose Large Hadron Collider experiment for astroparticle physics, and one of nine detectors in the LHC accelerator at CERN. LHCf is designed to study the particles generated in the forward region of collisions, those almost directly in line with the colliding proton beams.

KASCADE was a European physics experiment started in 1996 at Forschungszentrum Karlsruhe, Germany, an extensive air shower experiment array to study the cosmic ray primary composition and the hadronic interactions, measuring simultaneously the electronic, muonic and hadronic components.

<span class="mw-page-title-main">Cosmic-ray observatory</span> Installation built to detect high-energy-particles coming from space

A cosmic-ray observatory is a scientific installation built to detect high-energy-particles coming from space called cosmic rays. This typically includes photons, electrons, protons, and some heavier nuclei, as well as antimatter particles. About 90% of cosmic rays are protons, 9% are alpha particles, and the remaining ~1% are other particles.

Centre for Underground Physics in Pyhäsalmi or CUPP is an underground physics laboratory located in Pyhäjärvi, Finland. It occupies part of the CallioLab research and development laboratories, overseen by Callio Pyhäsalmi.

The Tunka experiment now named TAIGA measures air showers, which are initiated by charged cosmic rays or high energy gamma rays. TAIGA is situated in Siberia in the Tunka valley close to lake Baikal. Meanwhile, TAIGA consists of five different detector systems: Tunka-133, Tunka-Rex, and Tunka-Grande for charged cosmic rays; Tunka-HiSCORE and Tunka-IACT for gamma astronomy. From the measurements of each detector it is possible to reconstruct the arrival direction, energy and type of the cosmic rays, where the accuracy is enhanced by the combination of different detector systems.

<span class="mw-page-title-main">LZ experiment</span> Experiment in South Dakota, United States

The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and South Korea. The experiment is located at the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by the United States Department of Energy's (DOE) Lawrence Berkeley National Lab.

<span class="mw-page-title-main">Accelerator Neutrino Neutron Interaction Experiment</span> Water Cherenkov detector experiment

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos. By implementing early prototypes of LAPPDs, high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV. ANNIE will begin installation in the summer of 2015. Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation which is expected to begin late 2018.

<span class="mw-page-title-main">Ter-Antonyan function</span>

The Ter-Antonyan function parameterizes the energy spectra of primary cosmic rays in the "knee" region by the continuously differentiable function of energy taking into account the rate of change of spectral slope. The function is expressed as:

References

  1. A.P. Garyaka; R.M. Martirosov; S.V. Ter-Antonyan; A.D. Erlykin; N.M. Nikolskaya; Y.A. Gallant; L.W. Jones; J. Procureur (2008). "All-particle primary energy spectrum in the 3-200 PeV energy range". Journal of Physics G . 35 (11): 115201. arXiv: 0808.1421 . Bibcode:2008JPhG...35k5201G. doi:10.1088/0954-3899/35/11/115201.
  2. A.P. Garyaka; R.M. Martirosov; S.V. Ter-Antonyan; N. Nikolskaya; Y.A. Gallant; L. Jones; J. Procureur (2007). "Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment". Astroparticle Physics . 28 (2): 169–181. arXiv: 0704.3200 . Bibcode:2007APh....28..169G. doi:10.1016/j.astropartphys.2007.04.004.
  3. S.V. Ter-Antonyan (2007). "Mutually compensative pseudo solutions of primary energy spectra in the knee region". Astroparticle Physics . 28 (3): 321–326. arXiv: 0706.4087 . Bibcode:2007APh....28..321T. doi:10.1016/j.astropartphys.2007.06.004.
  4. R.M. Martirosov; S.V. Ter-Antonyan; A.D. Erlykin; A.P. Garyaka; N.M. Nikolskaya; Y.A. Gallant; L.W. Jones (2009). "Galactic diffuse gamma-ray flux at the energy about 175 TeV". arXiv: 0905.3593 [astro-ph.GA].
  5. "Physicists at Armenia's Cosmic Ray Division Publish New Discoveries on Mount Aragats". 6 January 2023.
  6. "Highlights of Aragats Research - Cosmic Ray Division".
  7. Samvel Ter-Antonyan (2014). "Sharp knee phenomenon of primary cosmic ray energy spectrum". Physical Review D . 89 (12): 123003. arXiv: 1405.5472 . Bibcode:2014PhRvD..89l3003T. doi:10.1103/PhysRevD.89.123003.