GPS buoy

Last updated

A GPS buoy is a buoy equipped with a GPS receiver. [1] [2] [3] [4] [5] It is used for sea level and research search-and-rescue operations, among other applications.

See also

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Geophysics</span> Physics of the Earth and its vicinity

Geophysics is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines. The term geophysics classically refers to solid earth applications: Earth's shape; its gravitational, magnetic fields, and electromagnetic fields ; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets.

<span class="mw-page-title-main">Digital elevation model</span> 3D computer-generated imagery and measurements of terrain

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

<span class="mw-page-title-main">Geoid</span> Ocean shape without winds and tides

The geoid is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents. According to Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

<span class="mw-page-title-main">Satellite laser ranging</span>

In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.

<span class="mw-page-title-main">International Terrestrial Reference System and Frame</span> World spatial reference system co-rotating with the Earth in its diurnal motion in space

The International Terrestrial Reference System (ITRS) describes procedures for creating reference frames suitable for use with measurements on or near the Earth's surface. This is done in much the same way that a physical standard might be described as a set of procedures for creating a realization of that standard. The ITRS defines a geocentric system of coordinates using the SI system of measurement.

<span class="mw-page-title-main">Vertical deflection</span> Measure of the downward gravitational forces shift due to nearby mass

The vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection of the plumb line and astro-geodetic deflection, is a measure of how far the gravity direction at a given point of interest is rotated by local mass anomalies such as nearby mountains. They are widely used in geodesy, for surveying networks and for geophysical purposes.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">Polar motion</span> Motion of Earths rotational axis relative to its crust

Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust. This is measured with respect to a reference frame in which the solid Earth is fixed. This variation is a few meters on the surface of the Earth.

<span class="mw-page-title-main">Ocean acoustic tomography</span> Technique used to measure temperatures and currents over large regions of the ocean

Ocean acoustic tomography is a technique used to measure temperatures and currents over large regions of the ocean. On ocean basin scales, this technique is also known as acoustic thermometry. The technique relies on precisely measuring the time it takes sound signals to travel between two instruments, one an acoustic source and one a receiver, separated by ranges of 100–5,000 kilometres (54–2,700 nmi). If the locations of the instruments are known precisely, the measurement of time-of-flight can be used to infer the speed of sound, averaged over the acoustic path. Changes in the speed of sound are primarily caused by changes in the temperature of the ocean, hence the measurement of the travel times is equivalent to a measurement of temperature. A 1 °C (1.8 °F) change in temperature corresponds to about 4 metres per second (13 ft/s) change in sound speed. An oceanographic experiment employing tomography typically uses several source-receiver pairs in a moored array that measures an area of ocean.

<span class="mw-page-title-main">GNSS reflectometry</span> Earth observation technology

GNSS reflectometry involves making measurements from the reflections from the Earth of navigation signals from Global Navigation Satellite Systems such as GPS. The idea of using reflected GNSS signal for earth observation became more and more popular in the mid-1990s at NASA Langley Research Center and is also known as GPS reflectometry. Research applications of GNSS-R are found in

The International Association of Geodesy (IAG) is a constituent association of the International Union of Geodesy and Geophysics.

The marine optical buoy (MOBY) measures light at and very near the sea surface in a specific location over a long period of time, serving as part of an ocean color observation system. Satellites are another component of the system, providing global coverage through remote sensing; however, satellites measure light above the Earth's atmosphere, becoming subject to interference from the atmosphere itself and other light sources. The Marine Optical Buoy helps alleviate that interference and thus improve the quality of the overall ocean color observation system.

In geodesy and astrometry, earth orientation parameters (EOP) describe irregularities in the rotation of planet Earth. EOP provide the rotational transform from the International Terrestrial Reference System (ITRS) to the International Celestial Reference System (ICRS), or vice versa, as a function of time.

UNAVCO was a non-profit university-governed consortium that facilitated geology research and education using geodesy.

Least-squares adjustment is a model for the solution of an overdetermined system of equations based on the principle of least squares of observation residuals. It is used extensively in the disciplines of surveying, geodesy, and photogrammetry—the field of geomatics, collectively.

<span class="mw-page-title-main">Hans-Georg Wenzel</span>

Hans-Georg Wenzel, also known as George Wenzel, was a German geodesist, geophysicist and university lecturer. His most important field of work was physical geodesy, where he worked after his dissertation on earth tides with geophysical measurements up to global models of the earth gravity field.

<span class="mw-page-title-main">Kristine M. Larson</span> American geophysicist

Kristine Marie Larson is an American academic. She is Emeritus Professor of Aerospace Engineering at the University of Colorado Boulder. Her research considers the development of algorithms for high-precision Global Positioning System (GPS) data analysis. She was the first to demonstrate that GPS could be used to detect seismic waves. She was awarded the 2015 European Geosciences Union Christiaan Huygens Medal.

Remote sensing in oceanography is a widely used observational technique which enables researchers to acquire data of a location without physically measuring at that location. Remote sensing in oceanography mostly refers to measuring properties of the ocean surface with sensors on satellites or planes, which compose an image of captured electromagnetic radiation. A remote sensing instrument can either receive radiation from the earth’s surface (passive), whether reflected from the sun or emitted, or send out radiation to the surface and catch the reflection (active). All remote sensing instruments carry a sensor to capture the intensity of the radiation at specific wavelength windows, to retrieve a spectral signature for every location. The physical and chemical state of the surface determines the emissivity and reflectance for all bands in the electromagnetic spectrum, linking the measurements to physical properties of the surface. Unlike passive instruments, active remote sensing instruments also measure the two-way travel time of the signal; which is used to calculate the distance between the sensor and the imaged surface. Remote sensing satellites often carry other instruments which keep track of their location and measure atmospheric conditions.

References

  1. "GPS Buoy - Refmar". refmar.shom.fr. Retrieved 2019-02-03.
  2. André, Gaël; Míguez, Belén Martín; Ballu, Valérie; Testut, Laurent; Wöppelmann, Guy (2015-04-29). "Measuring Sea Level with GPS-Equipped Buoys: A Multi-Instruments Experiment at Aix Island". The International Hydrographic Review (in French) (10). ISSN   0020-6946 . Retrieved 2019-02-14.
  3. Cheng, K.; Shum, C.; Han, S.; Yi, Y.; Martin, D. (2001). "Application of GPS-Buoy Water Level Instrument for Radar Altimeter Calibration". Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia. Vol. 123. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 171–178. doi:10.1007/978-3-662-04827-6_29. ISBN   978-3-642-07634-3. ISSN   0939-9585.
  4. Key, Kevin W.; Parke, Michael E.; Born, George H. (1998). "Mapping the sea surface using a GPS buoy". Marine Geodesy. Informa UK Limited. 21 (1): 67–79. Bibcode:1998MarGe..21...67K. doi:10.1080/01490419809388122. ISSN   0149-0419.
  5. Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H.; Wolf, Susan Kornreich (1990). "Measuring precise sea level from a buoy using the global positioning system". Geophysical Research Letters. American Geophysical Union (AGU). 17 (12): 2145–2148. Bibcode:1990GeoRL..17.2145R. doi:10.1029/gl017i012p02145. ISSN   0094-8276.