GRB 050709

Last updated
GRB 050709
Other designations GRB 050709
Event type Gamma-ray burst Blue pencil.svg
Date 9 July 2005 Blue pencil.svg
Duration 0.07 ±0.01 second Blue pencil.svg
Instrument High Energy Transient Explorer Blue pencil.svg
Constellation Grus Blue pencil.svg
Right ascension 23h 01m 32.1s
Declination −38° 59 27
Redshift 0.16 Blue pencil.svg
Total energy output 6 × 1049 erg [1]

GRB 050709 was a gamma-ray burst (GRB) detected on July 9, 2005. A gamma-ray burst is a highly luminous flash of gamma rays, the most energetic form of electromagnetic radiation, which is often followed by a longer-lived "afterglow" emitting at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).

Gamma-ray burst flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths.

Luminosity total amount of energy emitted by an object per unit time

In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power.

Gamma ray electromagnetic radiation of high frequency and therefore high energy

A gamma ray or gamma radiation, is a penetrating electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; he had previously discovered two less penetrating types of decay radiation, which he named alpha rays and beta rays in ascending order of penetrating power.

Contents

Observations

GRB 050709 was detected by multiple instruments on board HETE-2 on July 9, 2005 at 22:36:37 UTC. [2] The first pulse lasted 100 milliseconds, followed 30 seconds later by a fainter pulse lasting approximately 150 seconds. The disparity between the spectra of the first pulse and the second suggest that the second pulse was the onset of the burst's afterglow. As such, this burst was classified as a short-duration hard burst. [2]

A radio source was detected on July 11 at a position of R.A.=23h 01m 32.1s, Decl.=−38° 59 27. [3] Optical observations taken 34 hours after the burst revealed an optical afterglow. This was the first discovery of transient optical emission from a short burst. [4]

Right ascension Astronomical equivalent of longitude

Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point above the earth in question. When paired with declination, these astronomical coordinates specify the direction of a point on the celestial sphere in the equatorial coordinate system.

Declination Astronomical coordinate analogous to latitude

In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of the celestial equator, along the hour circle passing through the point in question.

Ejecta

Analysis of the burst's afterglows suggested two models to explain the burst's afterglow. In the first, the burst's ejecta were collimated into a jet with a half-angle greater than 6° and interacted with a high-density medium. In the second, the jet had a half-angle greater than 2° and interacted with a low-density medium. If the characteristics of the first model, which were similar to those of GRB 050724, are representative of all short GRBs, then the emission jets of short GRBs are less collimated and less energetic than those of long GRBs. [5]

Ejecta particles that came out of a volcanic vent

Ejecta are particles ejected from an area. In volcanology, in particular, the term refers to particles including pyroclastic materials (Tephra) that came out of a volcanic explosion and magma eruption volcanic vent, or crater, has traveled through the air or under water, and fell back on the ground surface or on the ocean floor.

Host galaxy

GRB 050709's x-ray afterglow associated the burst with a host galaxy at a redshift of z = 0.16. This galaxy's light curve excluded the possibility of a supernova association, a common feature of long bursts. This suggested that short-duration bursts release much less energy than long-duration bursts.

Supernova Star exploding at the end of its stellar lifespan

A supernova is an event that occurs upon the death of certain types of stars.

Notes

Related Research Articles

High Energy Transient Explorer space observatory

The High Energy Transient Explorer was an American astronomical satellite with international participation. The prime objective of HETE was to carry out the first multiwavelength study of gamma-ray bursts with UV, X-ray, and gamma-ray instruments mounted on a single, compact spacecraft. A unique feature of the HETE mission was its capability to localize GRBs with ~10 arc second accuracy in near real time aboard the spacecraft, and to transmit these positions directly to a network of receivers at existing ground-based observatories enabling rapid, sensitive follow-up studies in the radio, IR, and optical bands. The satellite bus for the first HETE-1 was designed and built by AeroAstro, Inc. of Herndon, VA; the replacement satellite, HETE-2, was built by MIT based on the original HETE design.

Neil Gehrels <i>Swift</i> Observatory mission concerning a space observatory in low earth orbit measuring gamma ray radiation

The Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Mission, is a NASA space telescope designed to detect gamma-ray bursts (GRBs). It was launched on November 20, 2004, aboard a Delta II rocket. Headed by principal investigator Neil Gehrels, NASA Goddard Space Flight Center, the mission was developed in a joint partnership between Goddard and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorers program (MIDEX).

GRB 970228

GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow, but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays ; this resulted in large positional uncertainties which left their nature very unclear.

Gamma-ray burst progenitors types of celestial objects

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

Gamma-Ray Burst Optical/Near-Infrared Detector

The Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) is an imaging instrument used to investigate Gamma-Ray Burst afterglows and for doing follow-up observations on exoplanets using transit photometry. It is operated at the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in the southern part of the Atacama desert, about 600 kilometres north of Santiago de Chile and at an altitude of 2,400 metres.

GRB 970508

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

The history of gamma-ray began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. As more and more research was done on these mysterious events, hundreds of models were developed in an attempt to explain their origins.

GRB 051221A was a gamma ray burst (GRB) that was detected by NASA's Swift Gamma-Ray Burst Mission on December 21, 2005. A gamma-ray burst is a highly luminous flash of gamma rays, the most energetic form of electromagnetic radiation. The coordinates of the burst were α= 21h 54m 50.7s, δ=16° 53′ 31.9″, and it lasted about 1.4 seconds. The same satellite discovered X-ray emission from the same object, and the GMOS Instrument on the Gemini Observatory discovered an afterglow in the visible spectrum. This was observed for the next ten days, allowing a redshift of Z = 0.5464 to be determined for the host galaxy.

GRB 090423 gamma-ray burst

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009 at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, which makes it one of the most distant objects detected to date with a spectroscopic redshift.

GRB 990123

GRB 990123 is a gamma-ray burst which was detected on January 23, 1999. It was the first GRB for which a simultaneous optical flash was detected. Astronomers first managed to obtain a visible-light image of a GRB as it occurred on January 23, 1999, using the ROTSE-I telescope in Los Alamos, New Mexico. The ROTSE-I was operated by a team under Dr. Carl W. Akerlof of the University of Michigan and included members from Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The robotic telescope was fully automated, responding to signals from NASA's BATSE instrument aboard the Compton Gamma Ray Observatory within seconds, without human intervention. In the dark hours of the morning of January 23, 1999, the Compton satellite recorded a gamma-ray burst that lasted for about a minute and a half. There was a peak of gamma and X-ray emission 25 seconds after the event was first detected, followed by a somewhat smaller peak 40 seconds after the beginning of the event. The emission then fizzled out in a series of small peaks over the next 50 seconds, and eight minutes after the event had faded to a hundredth of its maximum brightness. The burst was so strong that it ranked in the top 2% of all bursts detected.

GRB 000131 was a gamma-ray burst (GRB) that was detected on 31 January 2000 at 14:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 020813 was a gamma-ray burst (GRB) that was detected on 13 August 2002 at 02:44 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 011211 was a gamma-ray burst (GRB) detected on December 11, 2001. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 031203 was a gamma-ray burst (GRB) detected on December 3, 2003. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 030329 was a gamma-ray burst (GRB) that was detected on 29 March 2003 at 11:37 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths. GRB 030329 was the first burst whose afterglow definitively exhibited characteristics of a supernova, confirming the existence of a relationship between the two phenomena.

GRB 070714B was a gamma-ray burst (GRB) that was detected on 14 July 2007 at 04:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 101225A

GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.

GRB 130427A gamma-ray burst

GRB 130427A was a record-setting gamma-ray burst, discovered starting on April 27, 2013. This GRB was associated to SN 2013cq, of which the appearance of optical signal was predicted on May 2, 2013 and detected on May 13, 2013. The Fermi space observatory detected a gamma-ray with an energy of at least 94 billion electron volts. It was simultaneously detected by the Burst Alert Telescope aboard the Swift telescope and was one of the brightest bursts Swift had ever detected. It was one of the five closest GRBs, at about 3.6 billion light-years away, and was comparatively long-lasting.

Fermi's Large Area Telescope (LAT) recorded one gamma ray with an energy of at least 94 billion electron volts (GeV), or some 35 billion times the energy of visible light, and about three times greater than the LAT's previous record. The GeV emission from the burst lasted for hours, and it remained detectable by the LAT for the better part of a day, setting a new record for the longest gamma-ray emission from a GRB.

References

The bibcode is a compact identifier used by several astronomical data systems to uniquely specify literature references.

arXiv online digital archive for electronic preprints of scientific papers

arXiv is a repository of electronic preprints approved for posting after moderation, but not full peer review. It consists of scientific papers in the fields of mathematics, physics, astronomy, electrical engineering, computer science, quantitative biology, statistics, mathematical finance and economics, which can be accessed online. In many fields of mathematics and physics, almost all scientific papers are self-archived on the arXiv repository. Begun on August 14, 1991, arXiv.org passed the half-million-article milestone on October 3, 2008, and had hit a million by the end of 2014. By October 2016 the submission rate had grown to more than 10,000 per month.

Digital object identifier Character string used as a permanent identifier for a digital object, in a format controlled by the International DOI Foundation

In computing, a Digital Object Identifier or DOI is a persistent identifier or handle used to uniquely identify objects, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.