GTEM cell

Last updated

A GTEM or gigahertz transverse electromagnetic cell is a type of electromagnetic compatibility (EMC) test chamber used for radiated EMC testing. [1]

Contents

Description

The GTEM is an alternative EMC site (than SAC = Semi-anechoic chamber, FAC = fully anechoic chamber or OATS = Open Area Test Site) to perform emission and immunity tests correlated at "Far-field" conditions according to the requirements of the standard EN 61000-4-20. A GTEM cell provides homogeneous electromagnetic fields with TEM (Transverse electromagnetic wave mode) distribution, similar to the free space. The electric and magnetic field inside the cell can be accurately predicted using numerical methods. A GTEM cell external enclosure is made of conductive material such as metal, in the shape of a long, rectangular base pyramid. The pyramid is normally laid flat on the major side (bottom), although occasionally it may be stood on its base. Basically, the GTEM cell is a tapered rectangular 50 Ohm transmission stripline closed on a 50 Ohm load where the inner is called SEPTUM. The GTEM cell begins with a precision CNC craft transition: APEX, where a standard 50 Ohm coaxial connector (7/16", N, or SMA type) to the asymmetric rectangular waveguide is done. The GTEM is terminated on a lined surface made of radiation-absorbent material (RAM) such as carbon foam loaded; metal oxides multilayers hybrid absorbers with ferrite tiles with the side walls able to act as a waveguide. A slightly spherical wave propagates from the APEX source to the loaded tapered waveguide, since the solid opening angle is small, the undistorted spherical wave can be considered as a plane wave. To minimize phase delays that may occur in big GTEM, the termination surface of the absorbers is shaped as a spherical sector. The termination load section uses absorbing material for an electromagnetic wave and a distributed resistive load for current termination. At low frequencies, it operates as a circuit 50 Ohm load; at high frequencies, the absorbers attenuate the incident waves as in an anechoic chamber, In this way, a termination from DC to several Gigahertz is achieved. Theoretically, the GTEM is a broadband device able to operate from DC to Microwaves with some restrictions and compromises that conditioning the applications such as:

The main goals of the GTEM against Semi- and full anechoic chambers are:

Principles of operation

The GTEM cell forms an enclosed TEM (transverse electromagnetic mode) stripline, which acts as receiving emissions or transmitting emissions antenna:

Related Research Articles

Electromagnetic compatibility

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage in operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

Transmission line Specialized cable or other structure designed to carry radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

Waveguide Structure that guides waves, with minimal loss of energy by restricting the transmission of energy to one direction

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities decrease according to the inverse square law as they expand into three dimensional space.

Coaxial cable Electrical cable type with concentric inner conductor, insulator, and conducting shield

Coaxial cable, or coax is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.

Biconical antenna

In radio systems, a biconical antenna is a broad-bandwidth antenna made of two roughly conical conductive objects, nearly touching at their points.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

Anechoic chamber Room designed to be completely echo free

An anechoic chamber is a room designed to completely absorb reflections of either sound or electromagnetic waves. They are also often isolated from waves entering from their surroundings. This combination means that a person or detector exclusively hears direct sounds, in effect simulating being inside an infinitely large room.

Electromagnetic interference

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both man-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras. EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

Electromagnetic reverberation chamber

An electromagnetic reverberation chamber is an environment for electromagnetic compatibility (EMC) testing and other electromagnetic investigations. Electromagnetic reverberation chambers have been introduced first by H.A. Mendes in 1968. A reverberation chamber is screened room with a minimum of absorption of electromagnetic energy. Due to the low absorption very high field strength can be achieved with moderate input power. A reverberation chamber is a cavity resonator with a high Q factor. Thus, the spatial distribution of the electrical and magnetic field strengths is strongly inhomogeneous. To reduce this inhomogeneity, one or more tuners (stirrers) are used. A tuner is a construction with large metallic reflectors that can be moved to different orientations in order to achieve different boundary conditions. The Lowest Usable Frequency (LUF) of a reverberation chamber depends on the size of the chamber and the design of the tuner. Small chambers have a higher LUF than large chambers.

Waveguide (radio frequency) Hollow metal pipe used to carry radio waves

In radio-frequency engineering and communications engineering, waveguide is a hollow metal pipe used to carry radio waves. This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting microwave transmitters and receivers to their antennas, in equipment such as microwave ovens, radar sets, satellite communications, and microwave radio links.

Radiation-absorbent material

Radiation-absorbent material, usually known as RAM, is a material which has been specially designed and shaped to absorb incident RF radiation, as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation. Many measurements in electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing measurement errors and ambiguities.

Stripline

Stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line.

Emission-aware programming is a design philosophy aiming to reduce the amount of electromagnetic radiation emitted by electronic devices through proper design of the software executed by the device, rather than changing the hardware.

Isolator (microwave)

An isolator is a two-port device that transmits microwave or radio frequency power in one direction only. Due to internal behavior, the propagation in one direction is allowed while the other direction is blocked. The non-reciprocity observed in these devices usually comes from the interaction between the propagating wave and the material, which can be different with respect to the direction of propagation.

Metamaterial antenna

Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.

Tunable metamaterial

A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave interacts with a metamaterial. This means the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation. It encompasses developments beyond the bandwidth limitations in left-handed materials by constructing various types of metamaterials. The ongoing research in this domain includes electromagnetic materials that are very meta which mean good and has a band gap metamaterials (EBG), also known as photonic band gap (PBG), and negative refractive index material (NIM).

A via fence, also called a picket fence, is a structure used in planar electronic circuit technologies to improve isolation between components which would otherwise be coupled by electromagnetic fields. It consists of a row of via holes which, if spaced close enough together, form a barrier to electromagnetic wave propagation of slab modes in the substrate. Additionally if radiation in the air above the board is also to be suppressed, then a strip pad with via fence allows a shielding can to be electrically attached to the top side, but electrically behave as if it continued through the PCB.

Planar transmission line Transmission lines with flat ribbon-like conducting or dielectric lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections, the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength, these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

References

  1. "GTEM". eevblog.com. Retrieved 2011-09-22.
  2. "York EMC, GTEM practice guide" (PDF). Retrieved 2013-01-18.

Bibliography