Galena Group

Last updated
Galena Group
Stratigraphic range: Darriwilian-Sandbian
Trochonema.jpg
Unidentified Trochonema from the Galena Group
Type Group
Sub-units Decorah Shale, Dunleith Formation, Wise Lake Formation, Dubuque Formation [1]
Underlies Maquoketa Group
Overlies Platteville Limestone
Location
Country United States
Extent Minnesota, Wisconsin and Illinois

The Galena Group or Galena Limestone refers to a sedimentary sequence of Ordovician limestone that was deposited atop the Decorah Shale. It is part of the Ordovician stratigraphy of the Upper Midwestern United States. It was deposited in a calm marine environment, and is fossiliferous. [2]

Related Research Articles

<span class="mw-page-title-main">Geology of India</span>

The geology of India is diverse. Different regions of the Indian subcontinent contain rocks belonging to different geologic periods, dating as far back as the Eoarchean Era. Some of the rocks are very deformed and altered. Other deposits include recently deposited alluvium that has yet to undergo diagenesis. Mineral deposits of great variety are found in the subcontinent in huge quantities. Even India's fossil record is impressive in which stromatolites, invertebrates, vertebrates and plant fossils are included. India's geographical land area can be classified into the Deccan Traps, Gondwana and Vindhyan.

<span class="mw-page-title-main">Geology of Bangladesh</span>

The Geology of Bangladesh is affected by the country's location, as Bangladesh is mainly a riverine country. It is the eastern two-thirds of the Ganges and Brahmaputra river delta plain stretching to the north from the Bay of Bengal. There are two small areas of slightly higher land in the north-centre and north-west composed of old alluvium called the Madhupur Tract and the Barind Tract, and steep, folded, hill ranges of older (Tertiary) rocks along the eastern border.

<span class="mw-page-title-main">Decorah Shale</span>

The Decorah Shale is a fossiliferous shale that makes up the lowermost formation in the Galena Group. The Decorah lies above the Platteville Limestone and below the Cummingsville Formation in the sedimentary sequence that formed from the shallow sea that covered central North America during Ordovician Time. The Decorah consists of three members : Spechts Ferry, Guttenberg, and Ion. The Spechts Ferry member is organic-rich and suggests a large influx of terrigenous sediment during deposition. The Guttenberg is characterized by nodular calcareous beds and contains several K-bentonite deposits. The Ion Member, present in the southern Decorah in Iowa, is characterized by alternating beds of shale and limestone.

The Ordovician Kittatinny Formation or Kittatinny Limestone is a dolomitic limestone formation in New Jersey. The Kittatinny Limestones are located primarily in the Kittatinny Valley where it lies above the Ordovician Martinsburg Formation within the long valley running from Picatinny Arsenal in Rockaway Township, southwest toward Chester Township. It overlies the Cambrian Hardyston Quartzite.

<span class="mw-page-title-main">Platteville Limestone</span>

The Platteville Limestone is the Ordovician limestone formation in the sedimentary sequence characteristic of the upper Midwestern United States. It is characterized by its gray color, rough texture, and numerous fossils. Its type locality is Platteville, Wisconsin. It was heavily used in the early decades of the building of Minneapolis–Saint Paul and Faribault, Minnesota.

<span class="mw-page-title-main">Cincinnati Arch</span> Geologic uplift in the Midwestern United States

The Cincinnati Arch is a broad structural uplift between the Illinois Basin to the west, the Michigan Basin to the northwest, and the Appalachian Basin and Black Warrior Basin to the east and southeast. It existed as a positive topographic area during late Ordovician through the Devonian period which stretched from northern Alabama northeastward to the southeastern tip of Ontario. Fossils from the Ordovician are commonplace in the geologic formations which make up the Cincinnati Arch and are commonly studied along man made roadcuts. The Nashville Dome of Tennessee and the Jessamine Dome or Lexington Dome of central Kentucky make up the central portion of the arch. In the northern part, north of Cincinnati, Ohio, the Cincinnati Arch branches to form the Findlay and Kankakee arches. The Findlay plunges under Ontario and reappears as the Algonquin Arch further north.

<span class="mw-page-title-main">Jordan Formation</span> Geologic formation in the United States

The Jordan Formation is a siliciclastic sedimentary rock unit identified in Illinois, Michigan, Wisconsin, Minnesota, and Iowa. Named for distinctive outcrops in the Minnesota River Valley near the town of Jordan, it extends throughout the Iowa Shelf and eastward over the Wisconsin Arch and Lincoln anticline into the Michigan Basin.

The Lexington Limestone is a prominent geologic formation that constitutes a large part of the late Ordovician bedrock of the inner Bluegrass region in Kentucky. Named after the city of Lexington, the geologic formation has heavily influenced both the surface topography and economy of the region.

<span class="mw-page-title-main">Black River Group</span> Geologic group in Eastern and Midwestern, USA

The Black River Group is a geologic group that covers three sedimentary basins in the Eastern and Midwestern United States. These include the Appalachian Basin, Illinois Basin and the Michigan Basin. It dates back to the Late Ordovician period. It is roughly equivalent to the Platteville Group in Illinois. In Kentucky and Tennessee it is also known as the High Bridge Group. In areas where this Geologic Unit thins it is also called the Black River Formation (undifferentiated). One example of this is over the Cincinnati Arch and Findley Arch. Large parts of the Black River have been dolomized (where the parent limestone CaCO3 has been turned into dolomite CaMg(CO3)2.) This happed when there was interaction of hot saline brine and the limestone. This created hydrothermal dolomites that in some areas serve as petroleum reservoirs.

<span class="mw-page-title-main">Graneros Shale</span> Geological formation

The Graneros Shale is a geologic formation in the United States identified in the Great Plains as well as New Mexico that dates to the Cenomanian Age of the Cretaceous Period. It is defined as the finely sandy argillaceous or clayey near-shore/marginal-marine shale that lies above the older, non-marine Dakota sand and mud, but below the younger, chalky open-marine shale of the Greenhorn. This definition was made in Colorado by G. K. Gilbert and has been adopted in other states that use Gilbert's division of the Benton's shales into Carlile, Greenhorn, and Graneros. These states include Kansas, Texas, Oklahoma, Nebraska, and New Mexico as well as corners of Minnesota and Iowa. North Dakota, South Dakota, Wyoming, and Montana have somewhat different usages — in particular, north and west of the Black Hills, the same rock and fossil layer is named Belle Fourche Shale.

<span class="mw-page-title-main">Greenhorn Limestone</span> Geologic formation in the United States

The Greenhorn Limestone or Greenhorn Formation is a geologic formation in the Great Plains Region of the United States, dating to the Cenomanian and Turonian ages of the Late Cretaceous period. The formation gives its name to the Greenhorn cycle of the Western Interior Seaway.

The Vinini Formation is a marine, deep-water, sedimentary deposit of Ordovician to Early Silurian age in Nevada, U.S.A. It is notable for its highly varied, mainly siliceous composition, its mineral deposits, and controversies surrounding both its depositional environment and structural history. The formation was named by Merriam and Anderson for an occurrence along Vinini Creek in the Roberts Mountains of central Nevada and that name is now used extensively in the State.

The Folkeslunda Limestone is a thin limestone and mudstone geologic formation of Sweden. The formation crops out on the island of Öland to the east of Kalmar, where Folkeslunda is located. Other exposures of the formation are in Dalarna, Jämtland and Östergötland. The Folkeslunda Limestone was deposited in an open marine environment with an estimated water depth of 150 to 200 metres in a eustatically transgressive phase.

The Sinnipee Group is a geological group in Wisconsin. It consists primarily of sedimentary carbonate rocks. Primarily made of dolomite, it also has limestone as a secondary component and can even have shale imbedded with it. It was formed in the Ordovician period and has three rock members: Galena, Decorah, and Platteville formations.

<span class="mw-page-title-main">Durness Group</span>

The Durness Group is a geological group, a carbonate-dominated stratigraphic unit that forms a c. 170 km long narrow and discontinuous outcrop belt along the north-western coast of Scotland from the Isle of Skye and Loch Kishorn in the south to Durness and Loch Eriboll in the north. It forms the youngest part of the foreland basin of the Moine Thrust Belt in the Scottish Northwest Highlands and is incorporated into this belt's lowermost thrust sheets, where it is often affected by thrust faulting. It overlies the Ardvreck Group.

The geology of Missouri includes deep Precambrian basement rocks formed within the last two billion years and overlain by thick sequences of marine sedimentary rocks, interspersed with igneous rocks by periods of volcanic activity. Missouri is a leading producer of lead from minerals formed in Paleozoic dolomite.

The geology of Thailand includes deep crystalline metamorphic basement rocks, overlain by extensive sandstone, limestone, turbidites and some volcanic rocks. The region experienced complicated tectonics during the Paleozoic, long-running shallow water conditions and then renewed uplift and erosion in the past several million years ago.

<span class="mw-page-title-main">Douglas Lake Member</span> Geologic formation in Tennessee, United States

The Douglas Lake Member is a geologic unit of member rank of the Lenoir Limestone that overlies the Mascot Dolomite and underlies typical nodular member of the Lenoir Limestone in Douglas Lake, Tennessee, region. It fills depressions that are part of a regional unconformity at the base of Middle Ordovician strata, locally the Lenoir Limestone, that separates them from the underlying Lower Ordovician strata, locally the Knox Group.

<span class="mw-page-title-main">Edinburg Formation</span>

The Edinburg Formation is an Ordovician-age geological formation in Virginia. It is primarily composed of basinal limestone and shale, and is one of the younger units in the "Middle Ordovician" sequence of the Shenandoah Valley. However, fossils have shown that it actually was deposited in the early part of the Late Ordovician. There are two major facies encompassed by the Edinburg Formation. The more abundant Liberty Hall facies consist of evenly bedded black limestone and shale. In a few areas, the Liberty Hall facies intertongue with the Lantz Mill facies. The Lantz Mill facies are grainy or cobbly wackestone which weathers to a buff brown color. Fossils are diverse, including graptolites, brachiopods, and trilobites.

<span class="mw-page-title-main">Knox Supergroup</span> Widespread geologic group in the Southeastern United States

The Knox Supergroup, also known as the Knox Group and the Knox Formation, is a widespread geologic group in the Southeastern United States. The age is from the Late Cambrian to the Early Ordovician. Predominantly, it is composed of carbonates, chiefly dolomite, with some limestone. There are also cherty inclusions as well as thin beds of sandstone.

References

  1. Raatz, William; Ludvigson, Greg (1996). "Depositional environments and sequence stratigraphy of Upper Ordovician epicontinental deep water deposits, eastern Iowa and southern Minnesota". Special Paper of the Geological Society of America. 306 via ResearchGate.
  2. Mossler, J. and Benson, S., 1995, 1999, 2006, Fossil Collecting in the Twin Cities Area. Minnesota at a Glance: Minnesota Geological Survey: University of Minnesota.