A Galilean cannon is a device that demonstrates conservation of linear momentum. [1] It comprises a stack of balls, starting with a large, heavy ball at the base of the stack and progresses up to a small, lightweight ball at the top. The basic idea is that this stack of balls can be dropped to the ground and almost all of the kinetic energy in the lower balls will be transferred to the topmost ball - which will rebound to many times the height from which it was dropped. At first sight, the behavior seems highly counter-intuitive, but in fact is precisely what conservation of momentum predicts. The principal difficulty is in keeping the configuration of the balls stable during the initial drop. Early descriptions involve some sort of glue/tape, [2] tube, or net [3] to align the balls.
A modern version of the Galilean cannon was sold by Edmund Scientific Corporation and is still sold as the "Astro Blaster". [4] [5] In this device, a heavy wire is threaded through all of the balls to keep them accurately aligned - but the principle is the same. The resulting rebound is quite powerful; in fact, eye safety issues became so prevalent that this toy now comes with safety goggles.
It is possible to demonstrate the principle more simply with just two balls, such as a basketball and a tennis ball. If an experimenter balances the tennis ball on top of the basketball and drops the pair to the ground, the tennis ball will rebound to many times the height from which it was released. [6]
Assuming elastic collisions, uniform gravity, no air resistance and the sizes of the balls being negligible compared to the heights from which they are dropped, formulas for conservation of momentum and kinetic energy can be used to calculate the speed and heights of rebound of the small ball:
where | m1 = | mass of the large (lower) ball |
m2 = | mass of the small (upper) ball | |
v1′ = | velocity of the large ball after the collision between the balls | |
v2′ = | velocity of the small ball after the collision between the balls | |
v1 = | velocity of the large ball before the collision between the balls | |
v2 = | velocity of the small ball before the collision between the balls |
Solving the simultaneous equations above for v2′,
Taking velocities upwards as positive, as the balls fall from the same height and the large ball rebounds off the floor with the same speed, v1 = −v2 (the negative sign denoting the direction reversed). Thus
Because . As the rebound height is linearly proportional to the square of the launch speed, the maximum rebound height for a two-ball cannon is 32 = 9 times the original drop height, when m1>>m2.
In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is: In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.
In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.
The Trouton–Noble experiment was an attempt to detect motion of the Earth through the luminiferous aether, and was conducted in 1901–1903 by Frederick Thomas Trouton and H. R. Noble. It was based on a suggestion by George FitzGerald that a charged parallel-plate capacitor moving through the aether should orient itself perpendicular to the motion. Like the earlier Michelson–Morley experiment, Trouton and Noble obtained a null result: no motion relative to the aether could be detected. This null result was reproduced, with increasing sensitivity, by Rudolf Tomaschek, Chase and Hayden in 1994. Such experimental results are now seen, consistent with special relativity, to reflect the validity of the principle of relativity and the absence of any absolute rest frame. The experiment is a test of special relativity.
In physics, a spherical pendulum is a higher dimensional analogue of the pendulum. It consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity.
The Lorentz factor or Lorentz term is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz.
Newton's cradle is a device, usually made of metal, that demonstrates the principles of conservation of momentum and conservation of energy in physics with swinging spheres. When one sphere at the end is lifted and released, it strikes the stationary spheres, compressing them and thereby transmitting a pressure wave through the stationary spheres, which creates a force that pushes the last sphere upward. The last sphere swings back and strikes the stationary spheres, repeating the effect in the opposite direction. The device is named after 17th-century English scientist Sir Isaac Newton and was designed by French scientist Edme Mariotte. It is also known as Newton's pendulum, Newton's balls, Newton's rocker or executive ball clicker.
A Super Ball or Superball is a toy bouncy ball based on a type of synthetic rubber invented in 1964 by chemist Norman Stingley. It is an extremely elastic ball made of Zectron, which contains the synthetic polymer polybutadiene as well as hydrated silica, zinc oxide, stearic acid, and other ingredients. This compound is vulcanized with sulfur at a temperature of 165 °C (329 °F) and formed at a pressure of 3,500 psi (24 MPa). The resulting Super Ball has a very high coefficient of restitution, and if dropped from shoulder level on a hard surface, a Super Ball bounces nearly all the way back; thrown down onto a hard surface by an average adult, it can fly over a three-story building.
A bouncy ball or rubber ball is a spherical toy ball, usually fairly small, made of elastic material which allows it to bounce against hard surfaces. When thrown against a hard surface, bouncy balls retain their momentum and much of their kinetic energy. They can thus rebound with an appreciable fraction of their original force. Natural rubber originated in the Americas, and rubber balls were made before European contact, including for use in the Mesoamerican ballgame. Bouncy balls are a very common object of play. Christopher Columbus witnessed Haitians playing with a rubber ball in 1495.
Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships initially at rest in the inertial frame S. They start accelerating in the same direction simultaneously and equally, as measured in S, thus having the same velocity at all times as viewed from S. Therefore, they are all subject to the same Lorentz contraction, so the entire assembly seems to be equally contracted in the S frame with respect to the length at the start. At first sight, it might appear that the thread will not break during acceleration.
In physics, the coefficient of restitution, can be thought of as a measure of the elasticity of a collision between two bodies. It is a dimensionless parameter defined as the ratio of the relative velocity of separation after a two-body collision to the relative velocity of approach before collision. In most real-word collisions, the value of e lies somewhere between 0 and 1, where 1 represents a perfectly elastic collision and 0 a perfectly inelastic collision. The basic equation, sometimes known as Newton's restitution equation was developed by Sir Isaac Newton in 1687.
In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values. When applied to a mathematical representation of the state of a system, yields the same state multiplied by its angular momentum value if the state is an eigenstate. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.
In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.
The swinging Atwood's machine (SAM) is a mechanism that resembles a simple Atwood's machine except that one of the masses is allowed to swing in a two-dimensional plane, producing a dynamical system that is chaotic for some system parameters and initial conditions.
In physics, the center-of-momentum frame, also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The center of momentum of a system is not a location, but a collection of relative momenta/velocities: a reference frame. Thus "center of momentum" is a short for "center-of-momentum frame".
In linear algebra, a raising or lowering operator is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation operator. Well-known applications of ladder operators in quantum mechanics are in the formalisms of the quantum harmonic oscillator and angular momentum.
Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass. According to special relativity, the properties of particles moving approximately at the speed of light significantly deviate from the predictions of Newtonian mechanics. For instance, the speed of light cannot be reached by massive particles.
The physics of a bouncing ball concerns the physical behaviour of bouncing balls, particularly its motion before, during, and after impact against the surface of another body. Several aspects of a bouncing ball's behaviour serve as an introduction to mechanics in high school or undergraduate level physics courses. However, the exact modelling of the behaviour is complex and of interest in sports engineering.