A gas meter prover is a device to verify the accuracy of a gas meter. Provers are typically used in gas meter repair facilities, municipal gas meter shops, and public works shops. Provers work by passing a known volume of air through a meter, while monitoring the gas meter's register, index, or internal displacement. The prover determines the meter factor, which is the volume of air passed divided by the volume of air measured. [1]
Since the early 1900s, bell provers have been the most common reference standard used in gas meter proving, and has provided standards for the gas industry that is unfortunately susceptible to a myriad of immeasurable uncertainties.
A bell prover (commonly referred to in the industry as a "bell") consists of a vertical inner tank surrounded by an outer shell. A space between the inner tank and outer shell is filled with a sealing liquid, usually oil. An inverted tank, called the bell, is placed over the inner tank. The liquid provides an air-tight seal. Bell provers are typically counterweighted to provide positive pressure through a hose and valve connected to a meter. Sometimes rollers or guides are installed on the moving part of the bell which allows for smooth linear movement without the potential for immeasurable pressure differentials caused by the bell rocking back or forth.[ citation needed ]
Bells provide a volume of air that may be predetermined by calculated temperature, pressure and the effective diameter of the bell. Bell scales are unique to each bell and are usually attached vertically with a needle-like pointer. When proving a meter using a manually controlled bell, an operator must first fill the bell with a controlled air supply or raise it manually by opening a valve and pulling a chained mechanism, seal the bell and meter and check the sealed system for leaks, determine the flow rate needed for the meter, install a special flow-rate cap on the meter outlet, note the starting points of both the bell scale and meter index, release the bell valve to pass air through the meter, observe the meter index and calculate the time it takes to pass the predetermined amount of air, then manually calculate the meter's proof accounting for bell air and meter temperature and in some cases other environmental factors.
Uncertainties commonly experienced, and possibly unaccounted for within a test when using bell provers can lead to incorrect proofs, by which an operator may adjust a gas meter incorrectly. Temperature inconsistencies between the bell air, meter and connecting hoses can account for most meter proof inaccuracies. Other factors may be mechanical such as stuck or sticky bell rollers or guides, loose piping connections or valves, a dent in the test area of the bell, incorrect counterweights, and human errors in the operation or calculations.
The invention of programmable logic controllers (PLC) allowed gas meter repair facilities to automate most of the manual bell prover's process and calculations. Instead of manually raising and lowering the bell prover, solenoid valves connected to a PLC control air flows through the meter. Temperature, pressure, and humidity sensors can be used to feed data into an automated bell PLC, and calculations for meter proofs can be handled by a computer or electronic device programmed for such a purpose. In the early 1990s, the PLC was replaced by PACs (Programmable Automated Controls) and modern computer systems. Sensors to read the index of a meter were added to further automate the process, removing much of the human error associated with manual bell provers.
The natural evolution of the automated bell and PAC controls led itself to the use of vacuum driven provers with arrays of sonic nozzles (utilizing choked flow to provide precise flow rates. Such a use eliminated the need for a bell, as the flow rate is provided through the nozzles. When sufficient vacuum is applied to a sonic nozzle it creates a constant flow rate. Bernoulli's principle is applied to calculate the chosen flow rates chosen by the user or automated by a computer. Computers and PAC systems automate the process, and most sonic nozzle provers are capable of displaying not only meter proofs to a user, but are also capable of transmitting proofs as well as other important data to database systems across a computer network.
A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.
The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.
A gas meter is a specialized flow meter, used to measure the volume of fuel gases such as natural gas and liquefied petroleum gas. Gas meters are used at residential, commercial, and industrial buildings that consume fuel gas supplied by a gas utility. Gases are more difficult to measure than liquids, because measured volumes are highly affected by temperature and pressure. Gas meters measure a defined volume, regardless of the pressurized quantity or quality of the gas flowing through the meter. Temperature, pressure, and heating value compensation must be made to measure actual amount and value of gas moving through a meter.
This is a glossary of firefighting equipment.
Originally the gas flow computer was a mechanical or later a pneumatic or hydraulic computing module, subsequently superseded in most applications by an electronic module, as the primary elements switched from transmitting the measured variables from pneumatic or hydraulic pressure signals to electric current as explosion-proof ) and then intrinsically safe transmitters became available, that simply provided a dedicated gas flow computer function. Today "gas flow computers" as such have become uncommon, since gas flow computing is a subfunction of a data acquisition and control program implemented with programmable logic controller (PLCs) and remote terminal unit (RTUs); with the rise of smart transmitters in the early 1980s, these functions have also been incorporated within the field transmitters themselves.
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.
An air flow bench is a device used for testing the internal aerodynamic qualities of an engine component and is related to the more familiar wind tunnel.
A cascade filling system is a high-pressure gas cylinder storage system that is used for the refilling of smaller compressed gas cylinders. In some applications, each of the large cylinders is filled by a compressor, otherwise they may be filled remotely and replaced when the pressure is too low for effective transfer. The cascade system allows small cylinders to be filled without a compressor. In addition, a cascade system is useful as a reservoir to allow a low-capacity compressor to meet the demand of filling several small cylinders in close succession, with longer intermediate periods during which the storage cylinders can be recharged.
A pressure regulator is a valve that controls the pressure of a fluid to a desired value, using negative feedback from the controlled pressure. Regulators are used for gases and liquids, and can be an integral device with a pressure setting, a restrictor and a sensor all in the one body, or consist of a separate pressure sensor, controller and flow valve.
A valve actuator is the mechanism for opening and closing a valve. Manually operated valves require someone in attendance to adjust them using a direct or geared mechanism attached to the valve stem. Power-operated actuators, using gas pressure, hydraulic pressure or electricity, allow a valve to be adjusted remotely, or allow rapid operation of large valves. Power-operated valve actuators may be the final elements of an automatic control loop which automatically regulates some flow, level or other process. Actuators may be only to open and close the valve, or may allow intermediate positioning; some valve actuators include switches or other ways to remotely indicate the position of the valve.
A flow computer is an electronic computer which implements algorithms using the analog and digital signals received from flow meters, temperature, pressure and density transmitters to which it is connected into volumes at base conditions. They are used for custody or fiscal transfer.
Custody Transfer in the oil and gas industry refers to the transactions involving transporting physical substance from one operator to another. This includes the transferring of raw and refined petroleum between tanks and railway tank cars; onto ships, and other transactions. Custody transfer in fluid measurement is defined as a metering point (location) where the fluid is being measured for sale from one party to another. During custody transfer, accuracy is of great importance to both the company delivering the material and the eventual recipient, when transferring a material.
A pressure carburetor is a type of fuel metering system manufactured by the Bendix Corporation for piston aircraft engines, starting in the 1940s. It is recognized as an early type of throttle-body fuel injection and was developed to prevent fuel starvation during inverted flight.
This article briefly describes the components and systems found in jet engines.
Instrumentation is used to monitor and control the process plant in the oil, gas and petrochemical industries. Instrumentation ensures that the plant operates within defined parameters to produce materials of consistent quality and within the required specifications. It also ensures that the plant is operated safely and acts to correct out of tolerance operation and to automatically shut down the plant to prevent hazardous conditions from occurring. Instrumentation comprises sensor elements, signal transmitters, controllers, indicators and alarms, actuated valves, logic circuits and operator interfaces.
Automatic balancing valves are utilised in central heating and cooling systems that rely on flow of water through the system. They use the latest flow technology to ensure that the design flow rate is achieved at all times irrespective of any pressure changes within the system.
A gasoline pump or fuel dispenser is a machine at a filling station that is used to pump gasoline (petrol), diesel, or other types of liquid fuel into vehicles. Gasoline pumps are also known as bowsers or petrol bowsers, petrol pumps, or gas pumps.
Scuba gas management is the aspect of scuba diving which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of gas cylinders for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations, nitrogen narcosis, and oxygen toxicity risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas.
A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, to eliminate the bubbles produced by an open circuit system. A diving rebreather is generally understood to be a portable unit carried by the user, and is therefore a type of self-contained underwater breathing apparatus (scuba). A semi-closed rebreather carried by the diver may also be known as a gas extender. The same technology on a submersible or surface installation is more likely to be referred to as a life-support system.
The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.