Gauss pseudospectral method

Last updated

The Gauss pseudospectral method (GPM), one of many topics named after Carl Friedrich Gauss, is a direct transcription method for discretizing a continuous optimal control problem into a nonlinear program (NLP). The Gauss pseudospectral method differs from several other pseudospectral methods in that the dynamics are not collocated at either endpoint of the time interval. This collocation, in conjunction with the proper approximation to the costate, leads to a set of KKT conditions that are identical to the discretized form of the first-order optimality conditions. This equivalence between the KKT conditions and the discretized first-order optimality conditions leads to an accurate costate estimate using the KKT multipliers of the NLP.

Contents

Description

The method is based on the theory of orthogonal collocation where the collocation points (i.e., the points at which the optimal control problem is discretized) are the Legendre Gauss (LG) points. The approach used in the GPM is to use a Lagrange polynomial approximation for the state that includes coefficients for the initial state plus the values of the state at the N LG points. In a somewhat opposite manner, the approximation for the costate (adjoint) is performed using a basis of Lagrange polynomials that includes the final value of the costate plus the costate at the N LG points. These two approximations together lead to the ability to map the KKT multipliers of the nonlinear program (NLP) to the costates of the optimal control problem at the N LG points PLUS the boundary points. The costate mapping theorem that arises from the GPM has been described in several references including two PhD theses [1] [2] and journal articles that include the theory along with applications [3] [4] [5]

Background

Pseudospectral methods, also known as orthogonal collocation methods, in optimal control arose from spectral methods which were traditionally used to solve fluid dynamics problems. [6] [7] Seminal work in orthogonal collocation methods for optimal control problems date back to 1979 with the work of Reddien [8] and some of the first work using orthogonal collocation methods in engineering can be found in the chemical engineering literature. [9] More recent work in chemical and aerospace engineering have used collocation at the LegendreGaussRadau (LGR) points. [10] [11] [12] [13] Within the aerospace engineering community, several well-known pseudospectral methods have been developed for solving optimal control problems such as the Chebyshev pseudospectral method (CPM) [14] [15] the Legendre pseudospectral method (LPM) [16] and the Gauss pseudospectral method (GPM). [17] The CPM uses Chebyshev polynomials to approximate the state and control, and performs orthogonal collocation at the ChebyshevGauss Lobatto (CGL) points. An enhancement to the Chebyshev pseudospectral method that uses a ClenshawCurtis quadrature was developed. [18] The LPM uses Lagrange polynomials for the approximations, and LegendreGaussLobatto (LGL) points for the orthogonal collocation. A costate estimation procedure for the Legendre pseudospectral method was also developed. [19] Recent work shows several variants of the standard LPM, The Jacobi pseudospectral method [20] is a more general pseudospectral approach that uses Jacobi polynomials to find the collocation points, of which Legendre polynomials are a subset. Another variant, called the Hermite-LGL method [21] uses piecewise cubic polynomials rather than Lagrange polynomials, and collocates at a subset of the LGL points.

See also

References and notes

  1. Benson, D.A., A Gauss Pseudospectral Transcription for Optimal Control, Ph.D. Thesis, Dept. of Aeronautics and Astronautics, MIT, November 2004,
  2. Huntington, G.T., Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control, Ph.D. Thesis, Dept. of Aeronautics and Astronautics, MIT, May 2007
  3. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., and Rao, A.V., "Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method", Journal of Guidance, Control, and Dynamics. Vol. 29, No. 6, NovemberDecember 2006, pp. 14351440.,
  4. Huntington, G.T., Benson, D.A., and Rao, A.V., "Optimal Configuration of Tetrahedral Spacecraft Formations", The Journal of The Astronautical Sciences. Vol. 55, No. 2, MarchApril 2007, pp. 141169.
  5. Huntington, G.T. and Rao, A.V., "Optimal Reconfiguration of Spacecraft Formations Using the Gauss Pseudospectral Method", Journal of Guidance, Control, and Dynamics. Vol. 31, No. 3, MarchApril 2008, pp. 689698.
  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., Spectral Methods in Fluid Dynamics, SpringerVerlag, New York, 1988.
  7. Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge University Press, 1998.
  8. Reddien, G.W., "Collocation at Gauss Points as a Discretization in Optimal Control,"SIAM Journal on Control and Optimization, Vol. 17, No. 2, March 1979.
  9. Cuthrell, J.E. and Biegler, L.T., “Simultaneous Optimization and Solution Methods for Batch Reactor Control Profiles,” Computers and Chemical Engineering, Vol. 13, Nos. 1/2, 1989, pp.49–62.
  10. Hedengren, J.D.; Asgharzadeh Shishavan, R.; Powell, K.M.; Edgar, T.F. (2014). "Nonlinear modeling, estimation and predictive control in APMonitor". Computers & Chemical Engineering. 70 (5): 133–148. doi:10.1016/j.compchemeng.2014.04.013. S2CID   5793446.
  11. Fahroo, F. and Ross, I., “Pseudospectral Methods for Infinite Horizon Nonlinear Optimal Control Problems,” 2005 AIAA Guidance, Navigation, and Control Conference, AIAA Paper 20056076, San Francisco, CA, August 15–18, 2005.
  12. Kameswaran, S. and Biegler, L.T., “Convergence Rates for Dynamic Optimization Using Radau Collocation,” SIAM Conference on Optimization, Stockholm, Sweden, 2005.
  13. Kameswaran, S. and Biegler, L.T., “Convergence Rates for Direct Transcription of Optimal Control Problems at Radau Points,” Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, June 2006.
  14. Vlassenbroeck, J. and Van Doreen, R., “A Chebyshev Technique for Solving Nonlinear Optimal Control Problems,” IEEE Transactions on Automatic Control, Vol. 33, No. 4, 1988, pp. 333–340.
  15. Vlassenbroeck, J., “A Chebyshev Polynomial Method for Optimal Control with State Constraints,” Automatica, Vol. 24, 1988, pp. 499–506.
  16. Elnagar, J., Kazemi, M. A. and Razzaghi, M., The Pseudospectral Legendre Method for Discretizing Optimal Control Problems, IEEE Transactions on Automatic Control, Vol. 40, No. 10, 1995, pp. 17931796
  17. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., and Rao, A.V., “Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, November–December 2006, pp. 1435–1440.
  18. Fahroo, F. and Ross, I.M., “Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, JanuaryFebruary 2002, pp. 160–166.
  19. Ross, I. M., and Fahroo, F., Legendre Pseudospectral Approximations of Optimal Control Problems,Lecture Notes in Control and Information Sciences, Vol.295, Springer-Verlag, New York, 2003
  20. Williams, P., “Jacobi Pseudospectral Method for Solving Optimal Control Problems”, Journal of Guidance, Vol. 27, No. 2,2003
  21. Williams, P., “HermiteLegendreGaussLobatto Direct Transcription Methods In Trajectory Optimization,” Advances in the Astronautical Sciences. Vol. 120, Part I, pp. 465484. 2005

Related Research Articles

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

Trajectory optimization is the process of designing a trajectory that minimizes some measure of performance while satisfying a set of constraints. Generally speaking, trajectory optimization is a technique for computing an open-loop solution to an optimal control problem. It is often used for systems where computing the full closed-loop solution is not required, impractical or impossible. If a trajectory optimization problem can be solved at a rate given by the inverse of the Lipschitz constant, then it can be used iteratively to generate a closed-loop solution in the sense of Caratheodory. If only the first step of the trajectory is executed for an infinite-horizon problem, then this is known as Model Predictive Control (MPC).

In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions and a number of points in the domain, and to select that solution which satisfies the given equation at the collocation points.

In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method

Pseudospectral optimal control is a joint theoretical-computational method for solving optimal control problems. It combines pseudospectral (PS) theory with optimal control theory to produce PS optimal control theory. PS optimal control theory has been used in ground and flight systems in military and industrial applications. The techniques have been extensively used to solve a wide range of problems such as those arising in UAV trajectory generation, missile guidance, control of robotic arms, vibration damping, lunar guidance, magnetic control, swing-up and stabilization of an inverted pendulum, orbit transfers, tether libration control, ascent guidance and quantum control.

DIDO is a MATLAB optimal control toolbox for solving general-purpose optimal control problems. It is widely used in academia, industry, and NASA. Hailed as a breakthrough software, DIDO is based on the pseudospectral optimal control theory of Ross and Fahroo. The latest enhancements to DIDO are described in Ross.

In numerical analysis, Gauss–Legendre quadrature is a form of Gaussian quadrature for approximating the definite integral of a function. For integrating over the interval [−1, 1], the rule takes the form:

In applied mathematics, the pseudospectral knotting method is a generalization and enhancement of a standard pseudospectral method for optimal control. The concept was introduced by I. Michael Ross and F. Fahroo in 2004, and forms part of the collection of the Ross–Fahroo pseudospectral methods.

The Legendre pseudospectral method for optimal control problems is based on Legendre polynomials. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. A basic version of the Legendre pseudospectral was originally proposed by Elnagar and his coworkers in 1995. Since then, Ross, Fahroo and their coworkers have extended, generalized and applied the method for a large range of problems. An application that has received wide publicity is the use of their method for generating real time trajectories for the International Space Station.

The Chebyshev pseudospectral method for optimal control problems is based on Chebyshev polynomials of the first kind. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. Unlike the Legendre pseudospectral method, the Chebyshev pseudospectral (PS) method does not immediately offer high-accuracy quadrature solutions. Consequently, two different versions of the method have been proposed: one by Elnagar et al., and another by Fahroo and Ross. The two versions differ in their quadrature techniques. The Fahroo–Ross method is more commonly used today due to the ease in implementation of the Clenshaw–Curtis quadrature technique. In 2008, Trefethen showed that the Clenshaw–Curtis method was nearly as accurate as Gauss quadrature. This breakthrough result opened the door for a covector mapping theorem for Chebyshev PS methods. A complete mathematical theory for Chebyshev PS methods was finally developed in 2009 by Gong, Ross and Fahroo.

Introduced by I. Michael Ross and F. Fahroo, the Ross–Fahroo pseudospectral methods are a broad collection of pseudospectral methods for optimal control. Examples of the Ross–Fahroo pseudospectral methods are the pseudospectral knotting method, the flat pseudospectral method, the Legendre-Gauss-Radau pseudospectral method and pseudospectral methods for infinite-horizon optimal control.

Named after I. Michael Ross and F. Fahroo, the Ross–Fahroo lemma is a fundamental result in optimal control theory.

The Bellman pseudospectral method is a pseudospectral method for optimal control based on Bellman's principle of optimality. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. The method is named after Richard E. Bellman. It was introduced by Ross et al. first as a means to solve multiscale optimal control problems, and later expanded to obtain suboptimal solutions for general optimal control problems.

The covector mapping principle is a special case of Riesz' representation theorem, which is a fundamental theorem in functional analysis. The name was coined by Ross and co-workers, It provides conditions under which dualization can be commuted with discretization in the case of computational optimal control.

Ross' π lemma, named after I. Michael Ross, is a result in computational optimal control. Based on generating Carathéodory-π solutions for feedback control, Ross' π-lemma states that there is fundamental time constant within which a control solution must be computed for controllability and stability. This time constant, known as Ross' time constant, is proportional to the inverse of the Lipschitz constant of the vector field that governs the dynamics of a nonlinear control system.

Isaac Michael Ross is a Distinguished Professor and Program Director of Control and Optimization at the Naval Postgraduate School in Monterey, CA. He has published a highly-regarded textbook on optimal control theory and seminal papers in pseudospectral optimal control theory, energy-sink theory, the optimization and deflection of near-Earth asteroids and comets, robotics, attitude dynamics and control, orbital mechanics, real-time optimal control and unscented optimal control. The Kang–Ross–Gong theorem, Ross' π lemma, Ross' time constant, the Ross–Fahroo lemma, and the Ross–Fahroo pseudospectral method are all named after him.

Fariba Fahroo is an American Persian mathematician, a program manager at the Air Force Office of Scientific Research, and a former program manager at the Defense Sciences Office. Along with I. M. Ross, she has published papers in pseudospectral optimal control theory. The Ross–Fahroo lemma and the Ross–Fahroo pseudospectral method are named after her. In 2010, she received, the AIAA Mechanics and Control of Flight Award for fundamental contributions to flight mechanics.

GPOPS-II is a general-purpose MATLAB software for solving continuous optimal control problems using hp-adaptive Gaussian quadrature collocation and sparse nonlinear programming. The acronym GPOPS stands for "General Purpose OPtimal Control Software", and the Roman numeral "II" refers to the fact that GPOPS-II is the second software of its type.

The fractional Chebyshev collocation (FCC) method is an efficient spectral method for solving a system of linear fractional-order differential equations (FDEs) with discrete delays.