GenePattern

Last updated
GenePattern
Developer(s) Broad Institute, University of California, San Diego
Stable release
3.9.11 rc4 b216 / May 2019
Operating system
Type genomic analysis
License BSD [1]
Website www.genepattern.org

GenePattern is a freely available computational biology open-source software package originally created and developed at the Broad Institute for the analysis of genomic data. Designed to enable researchers to develop, capture, and reproduce genomic analysis methodologies, GenePattern was first released in 2004. GenePattern is currently developed at the University of California, San Diego.

Contents

Functionality

GenePattern is a powerful scientific workflow system that provides access to hundreds of genomic analysis tools. Use these analysis tools as building blocks to design sophisticated analysis pipelines that capture the methods, parameters, and data used to produce analysis results. Pipelines can be used to create, edit and share reproducible in silico results.

Project Objectives

  1. Accessibility: Run over 200 regularly updated analysis and visualization tools (that support data preprocessing, gene expression analysis, proteomics, Single nucleotide polymorphism (SNP) analysis, flow cytometry, and next-generation sequencing) and create analytic workflows without any programming through a point and click user interface.
  2. Reproducibility: Automated history and provenance tracking with versioning so that any user can share, repeat and understand a complete computational analysis
  3. Extensibility: Computational users can import their methods and code for sharing using tools that support easy creation and integration
  4. Multiple interfaces: Web browser, application, and programmatic interfaces make analysis modules and pipelines available to a broad range of users; public hosted server

Features

Availability

GenePattern is available:

  1. As a free public web application, [3] hosted on Amazon Web Services. Users can create accounts, perform analyses, and create pipelines on the server.
  2. As open-source software that can be downloaded and installed locally. [4]
  3. Public web servers hosted by other organizations. [5]

Notes

  1. "GenePattern: A platform for reproducible bioinformatics". GitHub . 5 November 2021.
  2. Kuehn, Heidi; Liberzon, Arthur; Reich, Michael; Mesirov, Jill P. (June 2008). "Using GenePattern for Gene Expression Analysis". Current Protocols in Bioinformatics. 22 (1): 7.12.1–7.12.39. doi:10.1002/0471250953.bi0712s22. ISSN   1934-3396. PMC   3893799 . PMID   18551415.
  3. "GenePattern". cloud.genepattern.org. Retrieved 2012-05-07.
  4. "GenePattern: Download GenePattern". Broadinstitute.org. Archived from the original on 2012-05-09. Retrieved 2012-05-07.
  5. "Use GenePattern". genepattern.org. 2006-10-07. Archived from the original on 2012-06-07. Retrieved 2012-05-07.

Related Research Articles

<span class="mw-page-title-main">Bioinformatics</span> Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.

Bioconductor is a free, open source and open development software project for the analysis and comprehension of genomic data generated by wet lab experiments in molecular biology.

<span class="mw-page-title-main">Orange (software)</span>

Orange is an open-source data visualization, machine learning and data mining toolkit. It features a visual programming front-end for explorative qualitative data analysis and interactive data visualization.

Computational genomics refers to the use of computational and statistical analysis to decipher biology from genome sequences and related data, including both DNA and RNA sequence as well as other "post-genomic" data. These, in combination with computational and statistical approaches to understanding the function of the genes and statistical association analysis, this field is also often referred to as Computational and Statistical Genetics/genomics. As such, computational genomics may be regarded as a subset of bioinformatics and computational biology, but with a focus on using whole genomes to understand the principles of how the DNA of a species controls its biology at the molecular level and beyond. With the current abundance of massive biological datasets, computational studies have become one of the most important means to biological discovery.

The completion of the human genome sequencing in the early 2000s was a turning point in genomics research. Scientists have conducted series of research into the activities of genes and the genome as a whole. The human genome contains around 3 billion base pairs nucleotide, and the huge quantity of data created necessitates the development of an accessible tool to explore and interpret this information in order to investigate the genetic basis of disease, evolution, and biological processes. The field of genomics has continued to grow, with new sequencing technologies and computational tool making it easier to study the genome.

<span class="mw-page-title-main">Galaxy (computational biology)</span>

Galaxy is a scientific workflow, data integration, and data and analysis persistence and publishing platform that aims to make computational biology accessible to research scientists that do not have computer programming or systems administration experience. Although it was initially developed for genomics research, it is largely domain agnostic and is now used as a general bioinformatics workflow management system.

The Viral Bioinformatics Resource Center (VBRC) is an online resource providing access to a database of curated viral genomes and a variety of tools for bioinformatic genome analysis. This resource was one of eight BRCs funded by NIAID with the goal of promoting research against emerging and re-emerging pathogens, particularly those seen as potential bioterrorism threats. The VBRC is now supported by Dr. Chris Upton at the University of Victoria.

<span class="mw-page-title-main">LONI Pipeline</span> Scientific workflow software

The LONI Pipeline is a free distributed system for designing, executing, monitoring and sharing scientific workflows on grid computing architectures. Pipeline allows users to connect and run any number of different software tools, and conveniently visualize and download the results.

A scientific workflow system is a specialized form of a workflow management system designed specifically to compose and execute a series of computational or data manipulation steps, or workflow, in a scientific application.

LabKey Server is a software suite available for scientists to integrate, analyze, and share biomedical research data. The platform provides a secure data repository that allows web-based querying, reporting, and collaborating across a range of data sources. Specific scientific applications and workflows can be added on top of the basic platform and leverage a data processing pipeline.

GenomeSpace is an environment for genomics software tools and applications. It helps users manage their analysis workflows involving multiple diverse tools, including web applications and desktop tools and facilitates the transfer of data between tools via automatic format conversion. Analyses can use data from local or cloud-based stores.

A bioinformatics workflow management system is a specialized form of workflow management system designed specifically to compose and execute a series of computational or data manipulation steps, or a workflow, that relate to bioinformatics.

<span class="mw-page-title-main">Geworkbench</span> Genomic data analysis software

geWorkbench is an open-source software platform for integrated genomic data analysis. It is a desktop application written in the programming language Java. geWorkbench uses a component architecture. As of 2016, there are more than 70 plug-ins available, providing for the visualization and analysis of gene expression, sequence, and structure data.

Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results.

<span class="mw-page-title-main">Gary Stormo</span> American geneticist (born 1950)

Gary Stormo is an American geneticist and currently Joseph Erlanger Professor in the Department of Genetics and the Center for Genome Sciences and Systems Biology at Washington University School of Medicine in St Louis. He is considered one of the pioneers of bioinformatics and genomics. His research combines experimental and computational approaches in order to identify and predict regulatory sequences in DNA and RNA, and their contributions to the regulatory networks that control gene expression.

<span class="mw-page-title-main">Gene set enrichment analysis</span> Bioinformatics method

Gene set enrichment analysis (GSEA) (also called functional enrichment analysis or pathway enrichment analysis) is a method to identify classes of genes or proteins that are over-represented in a large set of genes or proteins, and may have an association with different phenotypes (e.g. different organism growth patterns or diseases). The method uses statistical approaches to identify significantly enriched or depleted groups of genes. Transcriptomics technologies and proteomics results often identify thousands of genes, which are used for the analysis.

PrecisionFDA is a secure, collaborative, high-performance computing platform that has established a growing community of experts around the analysis of biological datasets in order to advance precision medicine, inform regulatory science, and enable improvements in health outcomes. This cloud-based platform is developed and served by the United States Food and Drug Administration (FDA). PrecisionFDA connects experts, citizen scientists, and scholars from around the world and provides them with a library of computational tools, workflow features, and reference data. The platform allows researchers to upload and compare data against reference genomes, and execute bioinformatic pipelines. The variant call file (VCF) comparator tool also enables users to compare their genetic test results to reference genomes. The platform's code is open source and available on GitHub. The platform also features a crowdsourcing model to sponsor community challenges in order to stimulate the development of innovative analytics that inform precision medicine and regulatory science. Community members from around the world come together to participate in scientific challenges, solving problems that demonstrate the effectiveness of their tools, testing the capabilities of the platform, sharing their results, and engaging the community in discussions. Globally, precisionFDA has more than 5,000 users.

The BioCompute Object (BCO) project is a community-driven initiative to build a framework for standardizing and sharing computations and analyses generated from High-throughput sequencing. The project has since been standardized as IEEE 2791-2020, and the project files are maintained in an open source repository. The July 22nd, 2020 edition of the Federal Register announced that the FDA now supports the use of BioCompute in regulatory submissions, and the inclusion of the standard in the Data Standards Catalog for the submission of HTS data in NDAs, ANDAs, BLAs, and INDs to CBER, CDER, and CFSAN.

Originally started as a collaborative contract between the George Washington University and the Food and Drug Administration, the project has grown to include over 20 universities, biotechnology companies, public-private partnerships and pharmaceutical companies including Seven Bridges and Harvard Medical School. The BCO aims to ease the exchange of HTS workflows between various organizations, such as the FDA, pharmaceutical companies, contract research organizations, bioinformatic platform providers, and academic researchers. Due to the sensitive nature of regulatory filings, few direct references to material can be published. However, the project is currently funded to train FDA Reviewers and administrators to read and interpret BCOs, and currently has 4 publications either submitted or nearly submitted.

Nextflow is a scientific workflow system predominantly used for bioinformatic data analyses. It imposes standards on how to programmatically author a sequence of dependent compute steps and enables their execution on various local and cloud resources. Nextflow was conceived at the Centre for Genomic Regulation in Barcelona, Spain, but has since found world-wide adoption in biomedical and genomics research facilities and laboratories.

References

Related software: