Gene Porter Bridwell

Last updated

Gene Porter Bridwell
GenePorterBridwell.jpg
Official NASA portrait of Gene Porter Bridwell
Born (1935-10-04) October 4, 1935 (age 88)
EducationBachelor's degree in aeronautical engineering at Purdue University
Occupation(s)Director of the
Marshall Space Flight Center

Gene Porter Bridwell (born October 4, 1935) was the seventh director of the NASA Marshall Space Flight Center located in Huntsville, Alabama. He served as director from January 6, 1994, to February 3, 1996.

Before becoming director of the Marshall Center, G.P. (Porter) Bridwell served as manager of the Heavy Lift Launch Vehicle Definition Office, where he supervised efforts involving the proposed vehicle's design, development, and integration. He also served on special assignment with the Space Station Redesign Team and later the U.S./Russian Space Station Integration Team. Previously, he served as manager of the Shuttle Projects Office. There he managed the Shuttle's propulsion elements, including the Space Shuttle Main Engine, External Tank, Redesigned Solid Rocket Motor, Solid Rocket Booster, Advanced Solid Rocket Motor, and related systems and activities, including the Michoud Assembly Facility.

Bridwell was born in Linton, Indiana, on October 4, 1935, and graduated from State High School in Terre Haute, Indiana, in 1953. He earned a bachelor of science degree in aeronautical engineering in 1958 from Purdue University, West Lafayette, Indiana. He began his professional career as an engineer with Rocketdyne in Canoga Park, California. He joined the Marshall Center in 1962, and his early experience included assignments within the former Saturn Systems Office and Saturn V Program Office. In 1975, he transferred to the Shuttle Projects Office and served in key positions including chief of the Project Engineering Office, and deputy manager of the External Tank Project. In February 1983, he was appointed manager of the External Tank Project.

In the spring of 1987, he served temporarily as acting deputy center director of National Space Technology Laboratories in Mississippi. He was appointed director of institutional and program support at the Marshall Center in October 1988, and assumed the position of manager, Shuttle Projects Office, in May 1989.

In January 1990, Bridwell became the director of National Launch Systems for NASA Headquarters, co-located at the Marshall Center. In February 1992, he was officially transferred back to the Marshall Center from headquarters, where he assumed his post as manager of the Heavy Lift Launch Vehicle Definition Office.


Related Research Articles

<span class="mw-page-title-main">Marshall Space Flight Center</span> Rocketry and spacecraft propulsion research center

The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama, is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first mission was developing the Saturn launch vehicles for the Apollo program. Marshall has been the lead center for the Space Shuttle main propulsion and external tank; payloads and related crew training; International Space Station (ISS) design and assembly; computers, networks, and information management; and the Space Launch System. Located on the Redstone Arsenal near Huntsville, MSFC is named in honor of General of the Army George C. Marshall.

<span class="mw-page-title-main">Rogers Commission Report</span> Government report on the Space Shuttle Challenger disaster

The Rogers Commission Report was written by a Presidential Commission charged with investigating the Space Shuttle Challenger disaster during its 10th mission, STS-51-L. The report, released and submitted to President Ronald Reagan on June 9, 1986, both determined the cause of the disaster that took place 73 seconds after liftoff, and urged NASA to improve and install new safety features on the shuttles and in its organizational handling of future missions.

<span class="mw-page-title-main">Space Shuttle Solid Rocket Booster</span> Solid propellant rocket used to launch Space Shuttle orbiter.

The Space Shuttle Solid Rocket Booster (SRB) was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight. A pair of these provided 85% of the Space Shuttle's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned and parachuted into the Atlantic Ocean where they were recovered, examined, refurbished, and reused.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

<span class="mw-page-title-main">Space Shuttle external tank</span> Component of the Space Shuttle launch vehicle

The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three RS-25 main engines in the orbiter. The ET was jettisoned just over 10 seconds after main engine cut-off (MECO) and it re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean, away from shipping lanes and were not recovered.

<span class="mw-page-title-main">Michoud Assembly Facility</span> NASA rocket manufacturing complex in Michoud, New Orleans

The Michoud Assembly Facility (MAF) is an 832-acre manufacturing complex owned by NASA in New Orleans East, a section of New Orleans, Louisiana, in the United States. Organizationally it is part of NASA's Marshall Space Flight Center, and is currently a multi-tenant complex to allow commercial and government contractors, as well as government agencies, to use the site.

<span class="mw-page-title-main">Kennedy Space Center Launch Complex 39</span> Historic Apollo Moonport

Launch Complex 39 (LC-39) is a rocket launch site at the John F. Kennedy Space Center on Merritt Island in Florida, United States. The site and its collection of facilities were originally built as the Apollo program's "Moonport" and later modified for the Space Shuttle program.

<span class="mw-page-title-main">Shuttle-derived vehicle</span> Launch vehicle built from Space Shuttle components

Shuttle-derived vehicles (SDV) are space launch vehicles and spacecraft that use components, technology, and infrastructure originally developed for the Space Shuttle program.

<span class="mw-page-title-main">Mobile launcher platform</span> Structure used to support large rockets

A mobile launcher platform (MLP), also known as mobile launch platform, is a structure used to support a large multistage space vehicle which is assembled (stacked) vertically in an integration facility and then transported by a crawler-transporter (CT) to a launch pad. This becomes the support structure for launch.

<span class="mw-page-title-main">Space Shuttle design process</span> Development program of the NASA Space Shuttle

Before the Apollo 11 Moon landing in 1969, NASA began studies of Space Shuttle designs as early as October 1968. The early studies were denoted "Phase A", and in June 1970, "Phase B", which were more detailed and specific. The primary intended use of the Space Shuttle was supporting the future space station, ferrying a minimum crew of four and about 20,000 pounds (9,100 kg) of cargo, and being able to be rapidly turned around for future flights.

<span class="mw-page-title-main">Alex McCool</span> NASA manager (1923–2020)

Alexander A. McCool Jr. was manager of the Space Shuttle Projects Office at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. During his career, McCool contributed to several space developments including the Apollo Program, Skylab and the Space Shuttle program.

<span class="mw-page-title-main">Ares V</span> Canceled NASA rocket key to Project Constellation

The Ares V was the planned cargo launch component of the cancelled NASA Constellation program, which was to have replaced the Space Shuttle after its retirement in 2011. Ares V was also planned to carry supplies for a human presence on Mars. Ares V and the smaller Ares I were named after Ares, the Greek god of war.

<span class="mw-page-title-main">Ares I</span> Canceled NASA rocket key to the Constellation program

Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the "Crew Launch Vehicle" (CLV).

<span class="mw-page-title-main">James R. Thompson Jr.</span> Deputy Administrator of NASA

James Robert Thompson Jr., known as J.R. Thompson, was the fifth director of the NASA Marshall Space Flight Center located in Huntsville, Alabama. He served as director from September 29, 1986, to July 6, 1989. Thompson also served as NASA's deputy director from July 6, 1989, to November 8, 1991.

<span class="mw-page-title-main">Saturn C-3</span> Third rocket in the Saturn C series studied from 1959 to 1962

The Saturn C-3 was the third rocket in the Saturn C series studied from 1959 to 1962. The design was for a three-stage launch vehicle that could launch 45,000 kilograms (99,000 lb) to low Earth orbit and send 18,000 kilograms (40,000 lb) to the Moon via trans-lunar injection.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered with liquid fuel. It was flown from 1967 to 1973. It was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

A launch status check, also known as a "go/no go poll" and several other terms, occurs at the beginning of an American spaceflight mission in which flight controllers monitoring various systems are queried for operation and readiness status before a launch can proceed. For Space Shuttle missions, in the firing room at the Launch Control Center, the NASA Test Director (NTD) performed this check via a voice communications link with other NASA personnel. The NTD was the leader of the shuttle test team responsible for directing and integrating all flight crew, orbiter, external tank/solid rocket booster and ground support testing in the shuttle launch countdown. The NTD was also responsible for the safety of all personnel inside the pad after external tank loading, including the flight crew, about 10 go/no go reports. He reported to the Launch Director, who has another about 5 go/no go reports. The Launch director declares if a mission is go for launch.

<span class="mw-page-title-main">DIRECT & Jupiter Rocket Family</span> Proposed family of US super heavy-lift launch vehicles

DIRECT was a late-2000s proposed alternative super heavy lift launch vehicle architecture supporting NASA's Vision for Space Exploration that would replace the space agency's planned Ares I and Ares V rockets with a family of Shuttle-Derived Launch Vehicles named "Jupiter". It was intended to be the alternative to the Ares I and Ares V rockets which were under development for the Constellation program, intended to develop the Orion spacecraft for use in Earth orbit, the Moon, and Mars.

<span class="mw-page-title-main">Studied Space Shuttle designs</span> Launch vehicle study

During the lifetime of the Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These involved different ways of increasing cargo and crew capacity, as well as investigating further reusability. A large focus of these designs were related to developing new shuttle boosters and improvements to the central tank, but also looked to expand NASA's ability to launch deep space missions and build modular space stations. Many of these concepts and studies would shape the concepts and programs of the 2000s such as the Constellation, Orbital Space Plane Program, and Artemis program.

<span class="mw-page-title-main">Shuttle-Centaur</span> Proposed Space Shuttle upper stage

Shuttle-Centaur was a version of the Centaur upper stage rocket designed to be carried aloft inside the Space Shuttle and used to launch satellites into high Earth orbits or probes into deep space. Two variants were developed: Centaur G-Prime, which was planned to launch the Galileo and Ulysses robotic probes to Jupiter, and Centaur G, a shortened version planned for use with United States Department of Defense Milstar satellites and the Magellan Venus probe. The powerful Centaur upper stage allowed for heavier deep space probes, and for them to reach Jupiter sooner, prolonging the operational life of the spacecraft. However, neither variant ever flew on a Shuttle. Support for the project came from the United States Air Force (USAF) and the National Reconnaissance Office, which asserted that its classified satellites required the power of Centaur. The USAF agreed to pay half the design and development costs of Centaur G, and the National Aeronautics and Space Administration (NASA) paid the other half.