Gene dosage

Last updated

Gene dosage is the number of copies of a particular gene present in a genome. [1] Gene dosage is related to the amount of gene product (proteins or functional RNAs) the cell is able to express. Since, a gene acts as a template, the number of templates in the cell contributes to the amount of gene product able to be produced. However, the amount of gene product produced in a cell is more commonly dependent on regulation of gene expression. [2] The normal gene dosage is dependent on species, humans generally have two doses, one copy from the mother and one from the father. Changes in gene dosage can be a result of copy number variation (gene insertions or gene deletions), or aneuploidy (chromosome number abnormalities). These changes can have significant phenotypic consequences. [1]

Contents

Ploidy

Micrographic karyogram of a human male. Shows 2 sets of the 22 autosomal chromosomes and the 23rd chromosome set with one X and one Y. NHGRI human male karyotype.png
Micrographic karyogram of a human male. Shows 2 sets of the 22 autosomal chromosomes and the 23rd chromosome set with one X and one Y.
Schematic karyogram of a human, showing an overview of the human genome, with 22 homologous chromosomes, both the female (XX) and male (XY) versions of the sex chromosome (bottom right), as well as the mitochondrial genome (to scale at bottom left).
.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}
Further information: Karyotype Human karyotype with bands and sub-bands.png
Schematic karyogram of a human, showing an overview of the human genome, with 22 homologous chromosomes, both the female (XX) and male (XY) versions of the sex chromosome (bottom right), as well as the mitochondrial genome (to scale at bottom left).

Ploidy refers to the number of complete sets of chromosomes in a cell.

Humans typically have a gene dosage of two because they are diploid, they have two sets of 23 different chromosomes. The number of copies of chromosomes generally correlates to the number of copies of a gene present in the genome. For example, the gene that codes for the beta-subunit of hemoglobin (HBB) is located on chromosome 11. Humans have 2 copies of chromosome 11 so they have 2 copies of the HBB gene. [3]

Because humans are diploid, getting one copy of each chromosome from either their mother or father, different alleles can be inherited. Gene dosage can be affected if you present with two different alleles. Such as carriers for sickles cell anemia, who carry one disease allele and one normal allele for hemoglobin. As a result they only produce half normal hemoglobin and the other half is diseased.

Aneuploidy

If an individual has an abnormal number of chromosomes it is called aneuploidy. Aneuploidy is very common in humans, around 20-40% of all conceptions make a embryo displaying aneuploidy. [4] Most aneuploidy events are fatal and lead to miscarriage. However, there are a few exceptions including Down Syndrome and intersex conditions. Down Syndrome is caused by trisomy 21, having three copies of chromosome 21. Thus gene dosage is increased by 50% for the genes on that chromosome. Though not fully understood, it is thought that the increased expression of genes on is the cause of some of the characteristic traits of Down syndrome. The intersex condition, Turner syndrome occurs when a female only has one X chromosome, so they only have one sex chromosome. Klinefelter syndrome is another intersex condition where a male has two X chromosomes and one Y chromosome, so three sex chromosomes. All of these syndromes have characteristic changes in either appearance and/or behavior.

Not all species are diploid like humans [see Polyploidy]. For example some species of strawberries are octoploid. Meaning they have eight copies of each chromosome, so they would have eight copies of each gene, if that gene has only one copy per chromosome. Some species of wheat is hexaploid and some species of watermelon are triploid.

Ploidy in prokaryotes

Prokaryotes reproduce through asexual reproduction, usually by binary fission. The bacterial chromosome is present only in one copy per cell, but there can still be variation in gene dosage due to DNA replication which starts at the origin of replication and ends at the termination site. The genes that are closer to the origin site are replicated first and are consequently present in two copies in the cell for a longer time than the genes that are closer to the termination site. These slight gene dosage differences are responsible for variation in gene expression depending on the position on the chromosome. [5]

Copy number variation

Copy number variation

Some genes have more than one copy on a chromosome, sometimes this is normal and sometimes it is abnormal.

See also

Related Research Articles

<span class="mw-page-title-main">Autosome</span> Any chromosome other than a sex chromosome

An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal pairs, which may have different structures. The DNA in autosomes is collectively known as atDNA or auDNA.

<span class="mw-page-title-main">Chromosome</span> DNA molecule containing genetic material of a cell

A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are the histones. These proteins, aided by chaperone proteins, bind to and condense the DNA molecule to maintain its integrity. These chromosomes display a complex three-dimensional structure, which plays a significant role in transcriptional regulation.

<span class="mw-page-title-main">Meiosis</span> Type of cell division in sexually-reproducing organisms used to produce gametes

Meiosis is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately result in four cells with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and female will fuse to create a cell with two copies of each chromosome again, the zygote.

<span class="mw-page-title-main">Ploidy</span> Number of sets of chromosomes in a cell

Ploidy is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present : monoploid, diploid, triploid, tetraploid, pentaploid, hexaploid, heptaploid or septaploid, etc. The generic term polyploid is often used to describe cells with three or more chromosome sets.

<span class="mw-page-title-main">Polyploidy</span> Condition where cells of an organism have more than two paired sets of chromosomes

Polyploidy is a condition in which the cells of an organism have more than one pair of (homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs of homologous chromosomes. However, some organisms are polyploid. Polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid. Males of bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis; the sporophyte generation is diploid and produces spores by meiosis.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

<span class="mw-page-title-main">Karyotype</span> Photographic display of total chromosome complement in a cell

A karyotype is the general appearance of the complete set of chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is discerned by determining the chromosome complement of an individual, including the number of chromosomes and any abnormalities.

<span class="mw-page-title-main">Aneuploidy</span> Presence of an abnormal number of chromosomes in a cell

Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell.

Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene. Gene duplications can arise as products of several types of errors in DNA replication and repair machinery as well as through fortuitous capture by selfish genetic elements. Common sources of gene duplications include ectopic recombination, retrotransposition event, aneuploidy, polyploidy, and replication slippage.

<span class="mw-page-title-main">X-inactivation</span> Inactivation of copies of X chromosome

X-inactivation is a process by which one of the copies of the X chromosome is inactivated in therian female mammals. The inactive X chromosome is silenced by being packaged into a transcriptionally inactive structure called heterochromatin. As nearly all female mammals have two X chromosomes, X-inactivation prevents them from having twice as many X chromosome gene products as males, who only possess a single copy of the X chromosome.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

<span class="mw-page-title-main">Loss of heterozygosity</span>

Loss of heterozygosity (LOH) is a type of genetic abnormality in diploid organisms in which one copy of an entire gene and its surrounding chromosomal region are lost. Since diploid cells have two copies of their genes, one from each parent, a single copy of the lost gene still remains when this happens, but any heterozygosity is no longer present.

<span class="mw-page-title-main">Haploinsufficiency</span> Concept in genetics

Haploinsufficiency in genetics describes a model of dominant gene action in diploid organisms, in which a single copy of the wild-type allele at a locus in heterozygous combination with a variant allele is insufficient to produce the wild-type phenotype. Haploinsufficiency may arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it yields little or no gene product. Although the other, standard allele still produces the standard amount of product, the total product is insufficient to produce the standard phenotype. This heterozygous genotype may result in a non- or sub-standard, deleterious, and (or) disease phenotype. Haploinsufficiency is the standard explanation for dominant deleterious alleles.

<span class="mw-page-title-main">Polysomy</span> Abnormal multiples of one or more chromosomes

Polysomy is a condition found in many species, including fungi, plants, insects, and mammals, in which an organism has at least one more chromosome than normal, i.e., there may be three or more copies of the chromosome rather than the expected two copies. Most eukaryotic species are diploid, meaning they have two sets of chromosomes, whereas prokaryotes are haploid, containing a single chromosome in each cell. Aneuploids possess chromosome numbers that are not exact multiples of the haploid number and polysomy is a type of aneuploidy. A karyotype is the set of chromosomes in an organism and the suffix -somy is used to name aneuploid karyotypes. This is not to be confused with the suffix -ploidy, referring to the number of complete sets of chromosomes.

Genetic imbalance is to describe situation when the genome of a cell or organism has more copies of some genes than other genes due to chromosomal rearrangements or aneuploidy. Changes in gene dosage, the number of times a given gene is present in the cell nucleus, can create a genetic imbalance.

Genome instability refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or aneuploidy. Genome instability does occur in bacteria. In multicellular organisms genome instability is central to carcinogenesis, and in humans it is also a factor in some neurodegenerative diseases such as amyotrophic lateral sclerosis or the neuromuscular disease myotonic dystrophy.

45,X/46,XY mosaicism, also known as X0/XY mosaicism and mixed gonadal dysgenesis, is a mutation of sex development in humans associated with sex chromosome aneuploidy and mosaicism of the Y chromosome. This is called a mosaic karyotype because, like tiles in mosaic floors or walls, there is more than one type of cell. It is a fairly rare chromosomal disorder at birth, with an estimated incidence rate of about 1 in 15,000 live births. Mosaic loss of the Y chromosome in previously non-mosaic men grows increasingly common with age.

Diploidization is the process of converting a polyploid genome back into a diploid one. Polyploidy is a product of whole genome duplication (WGD) and is followed by diploidization as a result of genome shock. The plant kingdom has undergone multiple events of polyploidization followed by diploidization in both ancient and recent lineages. It has also been hypothesized that vertebrate genomes have gone through two rounds of paleopolyploidy. The mechanisms of diploidization are poorly understood but patterns of chromosomal loss and evolution of novel genes are observed in the process.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is split across two articles:

References

  1. 1 2 Hartwell LH (2011). Genetics: from genes to genomes (4th ed.). New York: McGraw-Hill. p. 435. ISBN   978-0-07-352526-6.
  2. Garrett RH, Grisham CM, Andreopoulos S, Willmore W, Gallouzi IE (2013), Biochemistry (1st Canadian ed.), Toronto: Nelson Education, pp. 1079–1083, ISBN   978-0-17-650265-2
  3. Booth A (September 2002). "MEDLINEplus: a golden gateway to health information resources". BMJ Evidence-Based Medicine. 7 (5): 136. doi: 10.1136/ebm.7.5.136 .
  4. Nagaoka SI, Hassold TJ, Hunt PA (June 2012). "Human aneuploidy: mechanisms and new insights into an age-old problem". Nature Reviews. Genetics. 13 (7): 493–504. doi:10.1038/nrg3245. PMC   3551553 . PMID   22705668.
  5. Bryant JA, Sellars LE, Busby SJ, Lee DJ (October 2014). "Chromosome position effects on gene expression in Escherichia coli K-12". Nucleic Acids Research. 42 (18): 11383–11392. doi:10.1093/nar/gku828. PMC   4191405 . PMID   25209233.