Gennadij Raivich

Last updated
Gennadij Raivich
Born
New Zealand
NationalityNew Zealand, Germany
OccupationProfessor of Perinatal Neuroscience
EmployerFormerly employed by University College London (UCL)
Known forMaternal and fetal medicine, scientific research
Notable workList of scientific publications (see article)
Criminal chargesTwo counts of sexual assault (convicted)
Criminal penaltyNine-month prison sentence, suspended for two years; £5,000 in prosecution costs

Gennadij Raivich is a professor of perinatal neuroscience, specialising in maternal and fetal medicine. He was born in New Zealand and is a qualified doctor in Germany; although he has taught in the UK he has never practised there. [1]

In April 2013, it was revealed Raivich had been arrested by police in connection with sexual assaults. These related to his activities as a private sperm donor, often using the pseudonym 'Frank Qualman', [2] during which he had fathered 58 children. [1] A trial at Blackfriars Crown Court in London ended with Raivich being found guilty of two counts of sexual assault. However, he was cleared of a further eight counts of sexual assault and sexual assault by digital penetration because the jury was unable to reach a verdict. [3]

Following the trial Raivich was given a nine-month prison sentence, suspended for two years, and ordered to pay £5,000 in prosecution costs. [3]

At the time of his arrest, Raivich was employed by the University College London (UCL)'s Institute for Women's Health. [4] Following the commencement of the case against him, Raivich continued to publish scientific papers; one co-authored with UCL staff was published almost a year later in March 2014. [1] Reporting for Times Higher Education, Jack Grove reported that: "A UCL spokesman said that the institution 'took steps to ensure UCL’s interests were protected' when it became aware of the matter. But it has refused to say whether he was suspended ahead of the court case or if his role in maternal medicine had been restricted". Grove added that immediately after Raivich's conviction the college had refused to say what action it would be taking in relation to his employment. [1] Raivich subsequently resigned from his post at UCL in September 2014. [4]

Publications

Related Research Articles

<span class="mw-page-title-main">Axon</span> Long projection on a neuron that conducts signals to other neurons

An axon or nerve fiber is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons, such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.

<span class="mw-page-title-main">Glia</span> Support cells in the nervous system

Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system and the peripheral nervous system that do not produce electrical impulses. The neuroglia make up more than one half the volume of neural tissue in the human body. They maintain homeostasis, form myelin in the peripheral nervous system, and provide support and protection for neurons. In the central nervous system, glial cells include oligodendrocytes, astrocytes, ependymal cells and microglia, and in the peripheral nervous system they include Schwann cells and satellite cells.

<span class="mw-page-title-main">Wallerian degeneration</span> Biological process of axonal degeneration

Wallerian degeneration is an active process of degeneration that results when a nerve fiber is cut or crushed and the part of the axon distal to the injury degenerates. A related process of dying back or retrograde degeneration known as 'Wallerian-like degeneration' occurs in many neurodegenerative diseases, especially those where axonal transport is impaired such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Primary culture studies suggest that a failure to deliver sufficient quantities of the essential axonal protein NMNAT2 is a key initiating event.

<span class="mw-page-title-main">Soma (biology)</span> Portion of a brain cell containing its nucleus

In cellular neuroscience, the soma, perikaryon, neurocyton, or cell body is the bulbous, non-process portion of a neuron or other brain cell type, containing the cell nucleus. Although it is often used to refer to neurons, it can also refer to other cell types as well, including astrocytes, oligodendrocytes, and microglia. There are many different specialized types of neurons, and their sizes vary from as small as about 5 micrometres to over 10 millimetres for some of the smallest and largest neurons of invertebrates, respectively.

<span class="mw-page-title-main">Microglia</span> Glial cell located throughout the brain and spinal cord

Microglia are a type of glial cell located throughout the brain and spinal cord of the central nervous system (CNS). Microglia account for about 10–15% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune defense in the CNS. Microglia originate in the yolk sac under a tightly regulated molecular process. These cells are distributed in large non-overlapping regions throughout the CNS. Microglia are key cells in overall brain maintenance – they are constantly scavenging the CNS for plaques, damaged or unnecessary neurons and synapses, and infectious agents. Since these processes must be efficient to prevent potentially fatal damage, microglia are extremely sensitive to even small pathological changes in the CNS. This sensitivity is achieved in part by the presence of unique potassium channels that respond to even small changes in extracellular potassium. Recent evidence shows that microglia are also key players in the sustainment of normal brain functions under healthy conditions. Microglia also constantly monitor neuronal functions through direct somatic contacts and exert neuroprotective effects when needed.

<span class="mw-page-title-main">Nerve growth factor</span> Mammalian protein found in Homo sapiens

Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was one of the first to be described. Since it was first isolated by Nobel Laureates Rita Levi-Montalcini and Stanley Cohen in 1956, numerous biological processes involving NGF have been identified, two of them being the survival of pancreatic beta cells and the regulation of the immune system.

HIV-associated neurocognitive disorders (HAND) are neurological disorders associated with HIV infection and AIDS. It is a syndrome of progressive deterioration of memory, cognition, behavior, and motor function in HIV-infected individuals during the late stages of the disease, when immunodeficiency is severe. HAND may include neurological disorders of various severity. HIV-associated neurocognitive disorders are associated with a metabolic encephalopathy induced by HIV infection and fueled by immune activation of macrophages and microglia. These cells are actively infected with HIV and secrete neurotoxins of both host and viral origin. The essential features of HIV-associated dementia (HAD) are disabling cognitive impairment accompanied by motor dysfunction, speech problems and behavioral change. Cognitive impairment is characterised by mental slowness, trouble with memory and poor concentration. Motor symptoms include a loss of fine motor control leading to clumsiness, poor balance and tremors. Behavioral changes may include apathy, lethargy and diminished emotional responses and spontaneity. Histopathologically, it is identified by the infiltration of monocytes and macrophages into the central nervous system (CNS), gliosis, pallor of myelin sheaths, abnormalities of dendritic processes and neuronal loss.

Gliosis is a nonspecific reactive change of glial cells in response to damage to the central nervous system (CNS). In most cases, gliosis involves the proliferation or hypertrophy of several different types of glial cells, including astrocytes, microglia, and oligodendrocytes. In its most extreme form, the proliferation associated with gliosis leads to the formation of a glial scar.

<span class="mw-page-title-main">Low-affinity nerve growth factor receptor</span> Human protein-coding gene

The p75 neurotrophin receptor (p75NTR) was first identified in 1973 as the low-affinity nerve growth factor receptor (LNGFR) before discovery that p75NTR bound other neurotrophins equally well as nerve growth factor. p75NTR is a neurotrophic factor receptor. Neurotrophic factor receptors bind Neurotrophins including Nerve growth factor, Neurotrophin-3, Brain-derived neurotrophic factor, and Neurotrophin-4. All neurotrophins bind to p75NTR. This also includes the immature pro-neurotrophin forms. Neurotrophic factor receptors, including p75NTR, are responsible for ensuring a proper density to target ratio of developing neurons, refining broader maps in development into precise connections. p75NTR is involved in pathways that promote neuronal survival and neuronal death.

<span class="mw-page-title-main">Synaptic pruning</span> Process of synapse elimination that occurs between early childhood and the onset of puberty

Synaptic pruning, a phase in the development of the nervous system, is the process of synapse elimination that occurs between early childhood and the onset of puberty in many mammals, including humans. Pruning starts near the time of birth and continues into the late-20s. During the pruning of a synapse, both the axon and the dendrite decay and die off. Synaptic pruning was traditionally considered to be complete by the time of sexual maturation, but MRI studies have discounted this idea.

<span class="mw-page-title-main">Nerve injury</span> Damage to nervous tissue

Nerve injury is an injury to a nerve. There is no single classification system that can describe all the many variations of nerve injuries. In 1941, Seddon introduced a classification of nerve injuries based on three main types of nerve fiber injury and whether there is continuity of the nerve. Usually, however, nerve injuries are classified in five stages, based on the extent of damage to both the nerve and the surrounding connective tissue, since supporting glial cells may be involved.

Neuroregeneration involves the regrowth or repair of nervous tissues, cells or cell products. Neuroregenerative mechanisms may include generation of new neurons, glia, axons, myelin, or synapses. Neuroregeneration differs between the peripheral nervous system (PNS) and the central nervous system (CNS) by the functional mechanisms involved, especially in the extent and speed of repair. When an axon is damaged, the distal segment undergoes Wallerian degeneration, losing its myelin sheath. The proximal segment can either die by apoptosis or undergo the chromatolytic reaction, which is an attempt at repair. In the CNS, synaptic stripping occurs as glial foot processes invade the dead synapse.

<span class="mw-page-title-main">Glial scar</span> Mass formed in response to injury to the nervous system

A glial scar formation (gliosis) is a reactive cellular process involving astrogliosis that occurs after injury to the central nervous system. As with scarring in other organs and tissues, the glial scar is the body's mechanism to protect and begin the healing process in the nervous system.

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein found in humans

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

<span class="mw-page-title-main">TREM2</span> Protein-coding gene in the species Homo sapiens

Triggering receptor expressed on myeloid cells 2(TREM2) is a protein that in humans is encoded by the TREM2 gene. TREM2 is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, which are immune cells in the central nervous system. In the liver, TREM2 is expressed by several cell types, including macrophages, that respond to injury. In the intestine, TREM2 is expressed by myeloid-derived dendritic cells and macrophage. TREM2 is overexpressed in many tumor types and has anti-inflammatory activities. It might therefore be a good therapeutic target.

<span class="mw-page-title-main">Olfactory ensheathing cell</span> Type of macroglia that ensheath unmyelinated olfactory neurons

Olfactory ensheathing cells (OECs), also known as olfactory ensheathing glia or olfactory ensheathing glial cells, are a type of macroglia found in the nervous system. They are also known as olfactory Schwann cells, because they ensheath the non-myelinated axons of olfactory neurons in a similar way to which Schwann cells ensheath non-myelinated peripheral neurons. They also share the property of assisting axonal regeneration.

Kalipada Pahan is a professor of Neurological Sciences, Biochemistry and Pharmacology, and the Floyd A. Davis, M.D., Endowed Chair in Neurology at the Rush University Medical Center. He is also a research career scientist at the Department of Veterans Affairs, Jesse Brown VA Medical Center. He is an eminent Indian American neuroscientist involved in translational research on multiple sclerosis, Parkinson's disease, Alzheimer's disease, dementia, and Batten disease. He is well known for his research on statins, cholesterol-lowering drugs. He first explored the application of statins in suppressing the inflammatory events in microglia, astroglia and macrophages. This finding has revolutionized the research on statin drugs. Later, his lab has shown that statins may be beneficial in protecting neurons and improving locomotor activities in Parkinson's disease by suppressing the activation of p21/Ras. His lab is also famous for research on cinnamon where they have described that this commonly-used natural spice may be beneficial for different brain disorders including improving memory and learning of poor learners. Recently his lab has delineated a unique crosstalk between fat and memory in which the lipid-lowering transcription factor PPARalpha controls the formation of hippocampal memory via transcriptional regulation of CREB, suggesting a possible reason for the connection between excess belly fat and memory loss.

Neuroinflammation is inflammation of the nervous tissue. It may be initiated in response to a variety of cues, including infection, traumatic brain injury, toxic metabolites, or autoimmunity. In the central nervous system (CNS), including the brain and spinal cord, microglia are the resident innate immune cells that are activated in response to these cues. The CNS is typically an immunologically privileged site because peripheral immune cells are generally blocked by the blood–brain barrier (BBB), a specialized structure composed of astrocytes and endothelial cells. However, circulating peripheral immune cells may surpass a compromised BBB and encounter neurons and glial cells expressing major histocompatibility complex molecules, perpetuating the immune response. Although the response is initiated to protect the central nervous system from the infectious agent, the effect may be toxic and widespread inflammation as well as further migration of leukocytes through the blood–brain barrier may occur.

Microglia are the primary immune cells of the central nervous system, similar to peripheral macrophages. They respond to pathogens and injury by changing morphology and migrating to the site of infection/injury, where they destroy pathogens and remove damaged cells.

Lorne Mendell is a neurobiologist currently employed as a distinguished professor in the department of neurobiology and behavior at Stony Brook University in New York. His research focuses primarily on neurotrophins in neonatal and adult mammals, and on the neuroplasticity of the mammalian spinal cord. His research interests lie in other areas including pain, nerve wind-up, and specifically the neurotrophin NT-3. He has contributed to the growing pool of knowledge of axonal development and regeneration of immature and mature neurons. He has been a part of the search for novel treatments for spinal cord injuries and continues to study neurotrophins to determine their effects on neuronal plasticity. He served a term as president of the Society of Neuroscience during 1997–1998.

References

  1. 1 2 3 4 Grove, Jack (14 August 2014). "University College London silent on fate of convicted professor". Times Higher Education . London. Retrieved 18 June 2015.
  2. Brown, Raymond (30 September 2014). "Prof Gennadij Raivich who fathered 58 children via his fertility clinic sentenced over molesting Cambridgeshire woman". Cambridge News . Cambridge. Retrieved 18 June 2015.
  3. 1 2 "UCL professor walks free from court after sexually assaulting woman who needed sperm donor". London Evening Standard . 30 September 2014. Retrieved 18 June 2015.
  4. 1 2 "The week in higher education - 9 October 2014". Times Higher Education . 9 October 2014. Retrieved 18 June 2015.