Genoeconomics

Last updated

Genoeconomics is an interdisciplinary field of protoscience that aims to combine molecular genetics and economics. [1]

Contents

Genoeconomics is based on the idea that economic indicators have a genetic basis — that a person's financial behaviour can be traced to their DNA and that genes are related to economic behaviour. As of 2023, the results have been inconclusive. Some minor correlations may have been identified between genetics and economic preferences. [2]

History

The word genoeconomics was coined in 2007. [3]

The field of economics and the economic indicators used by economists predate the Empiricist Age. [4] Genoeconomics adds biological foundations to these traditional economic indicators. [4]

Quantitative genetic data was not available to researchers until the year 2000, when the human genome was sequenced as part of the Human Genome Project. [3] Genetic milestones of the late 20th and early 21st century, such as the sequencing of the human genome, has spurred interest in research combining economics and genetics.[ citation needed ]

Background

Genoeconomics involves the study of single-nucleotide polymorphisms (SNPs). [3] The field of genoeconomics uses genetic data to infer economic preferences such as time preference, risk aversion, and educational attainment, [3] as well as macroeconomic data such as per-capita income. [5] For example, genoeconomic methodology was used in a 2012 study of tobacco taxes in the United States, where such taxes vary across jurisdictions, to look at "the interaction of a single nicotinic receptor and state-level tobacco taxes to predict tobacco use". [3] Additionally, genoeconomic research in 2013 found that two-fifths of the "variance of educational attainment is explained by genetic factors". [6]

Some genoeconomic researchers claim that the economic success of a country can be predicted by its genetic diversity. [5] The American economist Enrico Spolaore says that genoeconomic work could "reduce barriers to the flows of ideas and innovations across populations". [5]

Criticism and limitations

Genoeconomic research is prone to the public misconception that genetically-influenced behaviours are separate from environmental factors. [7] The authors of a 2012 paper said that their work "is not about a nature or nurture debate". [5]

Nature published an online article written in 2012 about the various reactions on the subject. [8] The field is criticized by biologists for lacking methodological rigour, [5] drawing conclusions about causation based on causal correlation, [3] and working with small sample sizes. [5] The political implications of the field are also a concern for some scientists; anticipating the publication of a genoeconomics article in the journal American Economic Review , a group of scientists and social scientists wrote an open letter which said that "the suggestion that an ideal level of genetic variation could foster economic growth and could even be engineered has the potential to be misused with frightening consequences to justify indefensible practices such as ethnic cleansing or genocide". [5]

As with other genetic-association research, [9] the reproducibility of genoeconomic experiments is troublesome to the field. [10] The small sample sizes used in genoeconomic research are also a problem. [11] Commonly cited by scientists as a way to improve genoeconomic research is the use of more statistically homogeneous samples. [12]

Related Research Articles

<span class="mw-page-title-main">Genetic engineering</span> Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms.

<span class="mw-page-title-main">Human genome</span> Complete set of nucleic acid sequences for humans

The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs. It also includes promoters and their associated gene-regulatory elements, DNA playing structural and replicatory roles, such as scaffolding regions, telomeres, centromeres, and origins of replication, plus large numbers of transposable elements, inserted viral DNA, non-functional pseudogenes and simple, highly repetitive sequences. Introns make up a large percentage of non-coding DNA. Some of this non-coding DNA is non-functional junk DNA, such as pseudogenes, but there is no firm consensus on the total amount of junk DNA.

<span class="mw-page-title-main">Genomics</span> Discipline in genetics

Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism. Genes may direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.

<span class="mw-page-title-main">Human genetic enhancement</span> Technologies to genetically improve human bodies

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases, prevent the possibility of getting a particular disease, to improve athlete performance in sporting events, or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. These genetic enhancements may or may not be done in such a way that the change is heritable.

The Human Genome Diversity Project (HGDP) was started by Stanford University's Morrison Institute in 1990s along with collaboration of scientists around the world. It is the result of many years of work by Luigi Cavalli-Sforza, one of the most cited scientists in the world, who has published extensively in the use of genetics to understand human migration and evolution. The HGDP data sets have often been cited in papers on such topics as population genetics, anthropology, and heritable disease research.

<span class="mw-page-title-main">Human genetic variation</span> Genetic diversity in human populations

Human genetic variation is the genetic differences in and among populations. There may be multiple variants of any given gene in the human population (alleles), a situation called polymorphism.

Research on the heritability of IQ inquires into the degree of variation in IQ within a population that is due to genetic variation between individuals in that population. There has been significant controversy in the academic community about the heritability of IQ since research on the issue began in the late nineteenth century. Intelligence in the normal range is a polygenic trait, meaning that it is influenced by more than one gene, and in the case of intelligence at least 500 genes. Further, explaining the similarity in IQ of closely related persons requires careful study because environmental factors may be correlated with genetic factors.

Xq28 is a chromosome band and genetic marker situated at the tip of the X chromosome which has been studied since at least 1980. The band contains three distinct regions, totaling about 8 Mbp of genetic information. The marker came to the public eye in 1993 when studies by Dean Hamer and others indicated a link between the Xq28 marker and male sexual orientation.

<span class="mw-page-title-main">Mary-Claire King</span> American geneticist

Mary-Claire King is an American geneticist. She was the first to show that breast cancer can be inherited due to mutations in the gene she called BRCA1. She studies human genetics and is particularly interested in genetic heterogeneity and complex traits. She studies the interaction of genetics and environmental influences and their effects on human conditions such as breast and ovarian cancer, inherited deafness, schizophrenia, HIV, systemic lupus erythematosus and rheumatoid arthritis. She has been the American Cancer Society Professor of the Department of Genome Sciences and of Medical Genetics in the Department of Medicine at the University of Washington since 1995.

<span class="mw-page-title-main">Genome-wide association study</span> Study of genetic variants in different individuals

In genomics, a genome-wide association study, is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWA studies typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but can equally be applied to any other genetic variants and any other organisms.

<span class="mw-page-title-main">1000 Genomes Project</span> International research effort on genetic variation

The 1000 Genomes Project (1KGP), taken place from January 2008 to 2015, was an international research effort to establish the most detailed catalogue of human genetic variation at the time. Scientists planned to sequence the genomes of at least one thousand anonymous healthy participants from a number of different ethnic groups within the following three years, using advancements in newly developed technologies. In 2010, the project finished its pilot phase, which was described in detail in a publication in the journal Nature. In 2012, the sequencing of 1092 genomes was announced in a Nature publication. In 2015, two papers in Nature reported results and the completion of the project and opportunities for future research.

<span class="mw-page-title-main">Neurogenetics</span> Study of role of genetics in the nervous system

Neurogenetics studies the role of genetics in the development and function of the nervous system. It considers neural characteristics as phenotypes, and is mainly based on the observation that the nervous systems of individuals, even of those belonging to the same species, may not be identical. As the name implies, it draws aspects from both the studies of neuroscience and genetics, focusing in particular how the genetic code an organism carries affects its expressed traits. Mutations in this genetic sequence can have a wide range of effects on the quality of life of the individual. Neurological diseases, behavior and personality are all studied in the context of neurogenetics. The field of neurogenetics emerged in the mid to late 20th century with advances closely following advancements made in available technology. Currently, neurogenetics is the center of much research utilizing cutting edge techniques.

In multivariate quantitative genetics, a genetic correlation is the proportion of variance that two traits share due to genetic causes, the correlation between the genetic influences on a trait and the genetic influences on a different trait estimating the degree of pleiotropy or causal overlap. A genetic correlation of 0 implies that the genetic effects on one trait are independent of the other, while a correlation of 1 implies that all of the genetic influences on the two traits are identical. The bivariate genetic correlation can be generalized to inferring genetic latent variable factors across > 2 traits using factor analysis. Genetic correlation models were introduced into behavioral genetics in the 1970s–1980s.

<span class="mw-page-title-main">Genetically modified animal</span> Animal that has been genetically modified

Genetically modified animals are animals that have been genetically modified for a variety of purposes including producing drugs, enhancing yields, increasing resistance to disease, etc. The vast majority of genetically modified animals are at the research stage while the number close to entering the market remains small.

Behavioural genetics, also referred to as behaviour genetics, is a field of scientific research that uses genetic methods to investigate the nature and origins of individual differences in behaviour. While the name "behavioural genetics" connotes a focus on genetic influences, the field broadly investigates the extent to which genetic and environmental factors influence individual differences, and the development of research designs that can remove the confounding of genes and environment. Behavioural genetics was founded as a scientific discipline by Francis Galton in the late 19th century, only to be discredited through association with eugenics movements before and during World War II. In the latter half of the 20th century, the field saw renewed prominence with research on inheritance of behaviour and mental illness in humans, as well as research on genetically informative model organisms through selective breeding and crosses. In the late 20th and early 21st centuries, technological advances in molecular genetics made it possible to measure and modify the genome directly. This led to major advances in model organism research and in human studies, leading to new scientific discoveries.

The missing heritability problem refers to the difference between heritability estimates from genetic data and heritability estimates from twin and family data across many physical and mental traits, including diseases, behaviors, and other phenotypes. This is a problem that has significant implications for medicine, since a person's susceptibility to disease may depend more on the combined effect of all the genes in the background than on the disease genes in the foreground, or the role of genes may have been severely overestimated.

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

Mark Joseph Daly is Director of the Finnish Institute for Molecular Medicine (FIMM) at the University of Helsinki, a Professor of Genetics at Harvard Medical School, Chief of the Analytic and Translational Genetic Unit at Massachusetts General Hospital, and a member of the Broad Institute of MIT and Harvard. In the early days of the Human Genome Project, Daly helped develop the genetic model by which linkage disequilibrium could be used to map the haplotype structure of the human genome. In addition, he developed statistical methods to find associations between genes and disorders such as Crohn's disease, inflammatory bowel disease, autism and schizophrenia.

David Alexander Cesarini is an associate professor in the Department of Economics & Center for Experimental Social Science at New York University, a Faculty Research Fellow at the National Bureau of Economic Research, as well as affiliated researcher at the Research Institute for Industrial Economics (IFN). He is an empirically oriented economist with interests in social-science genetics, applied microeconomics and behavioral economics—especially known for his research in genoeconomics and the heritability of economic behaviors and attitudes, such as investing decisions and confidence.

Medical genetic ethics is a field in which the ethics of medical genetics is evaluated. Like the other field of medicine, medical genetics also face ethical issues.

References

  1. Benjamin et al. 2012, p. 17; Navarro 2009; Beauchamp et al. 2011.
  2. Neyfakh 2012; Entine 2012; Fletcher 2018.
  3. 1 2 3 4 5 6 Fletcher 2018.
  4. 1 2 Benjamin et al. 2012, p. 18.
  5. 1 2 3 4 5 6 7 Callaway 2012.
  6. Rietveld 2013, p. 1467.
  7. Rietveld 2013, p. 1470.
  8. Entine 2012.
  9. Li & Meyre 2012.
  10. Fletcher 2018; Benjamin et al. 2012, p. 35.
  11. Benjamin et al. 2012, p. 21; Ward 2018.
  12. Rietveld 2013, p. 1470; Fletcher 2018.

Sources