Geostationary Carbon Cycle Observatory

Last updated

Geostationary Carbon Cycle Observatory (GeoCarb) [1] was an intended NASA Venture-class Earth observation mission that was designed to measure the carbon cycle.

Contents

GeoCarb was to be stationed over the Americas and make observations between 50° North and South latitudes. Its primary mission was to conduct observations of vegetation health and stress, as well as observe the processes that govern the carbon exchange of carbon dioxide, methane, and carbon monoxide between the land, atmosphere, and ocean. [2] [3] [4]

Selected by NASA in 2016. [5]

Originally intended to be mounted on a commercial geostationary communication satellite operated by SES S.A., [6] a lack of hosting opportunities drove NASA, in Feb 2022, to seek a standalone spacecraft to carry GeoCarb. [5]

On 29 November 2022, NASA announced the cancellation of development of the GeoCarb mission, citing cost overruns and the availability of other options to measure and observe greenhouse gases, like the EMIT instrument on the ISS and the upcoming Earth System Observatory. [7]

GeoCarb was a joint collaboration between NASA's Ames Research Center, Goddard Space Flight Center, and Jet Propulsion Laboratory; the University of Oklahoma; Colorado State University; the Lockheed Martin Advanced Technology Center of Palo Alto, California; and SES Government Solutions (now SES Space & Defense) of Reston, Florida. [4]

GeoCarb instrument

"The GeoCarb instrument consists of the aperture assembly, telescope, spectrometer, and electronics boxes. It is a four channel near-infrared, single-slit imaging spectrograph optimized to deduce concentrations of carbon dioxide, carbon monoxide and methane, and Solar-Induced Fluorescence (SIF) from Geostationary Orbit.

The instrument is built by Lockheed Martin Advanced Technology Center." [8]

See also

Related Research Articles

<span class="mw-page-title-main">Radiative forcing</span> Concept for changes to the energy flows through a planetary atmosphere

Radiative forcing is a concept used to quantify a change to the balance of energy flowing through a planetary atmosphere. Various factors contribute to this change in energy balance, such as concentrations of greenhouse gases and aerosols, and changes in surface albedo and solar irradiance. In more technical terms, it is defined as "the change in the net, downward minus upward, radiative flux due to a change in an external driver of climate change." These external drivers are distinguished from feedbacks and variability that are internal to the climate system, and that further influence the direction and magnitude of imbalance. Radiative forcing on Earth is meaningfully evaluated at the tropopause and at the top of the stratosphere. It is quantified in units of watts per square meter, and often summarized as an average over the total surface area of the globe.

<span class="mw-page-title-main">MOPITT</span> Canadian scientific instrument aboard NASAs Terra satellite

MOPITT is an ongoing astronomical instrument aboard NASA's Terra satellite that measures global tropospheric carbon monoxide levels. It is part of NASA's Earth Observing System (EOS), and combined with the other payload remote sensors on the Terra satellite, the spacecraft monitors the Earth's environment and climate changes. Following its construction in Canada, MOPITT was launched into Earth's orbit in 1999 and utilizes gas correlation spectroscopy to measure the presence of different gases in the troposphere. The fundamental operations occur in its optical system composed of two optical tables holding the bulk of the apparatus. Results from the MOPITT enable scientists to better understand carbon monoxide's effects on a global scale, and various studies have been conducted based on MOPITT's measurements.

<span class="mw-page-title-main">Coma (comet)</span> Cloud of gas or a trail around a comet or asteroid

The coma is the nebulous envelope around the nucleus of a comet, formed when the comet passes near the Sun in its highly elliptical orbit. As the comet warms, parts of it sublimate; this gives a comet a diffuse appearance when viewed through telescopes and distinguishes it from stars. The word coma comes from the Greek κόμη (kómē), which means "hair" and is the origin of the word comet itself.

<span class="mw-page-title-main">Upper Atmosphere Research Satellite</span> NASA-operated orbital observatory (1991-2011)

The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.

<span class="mw-page-title-main">Atmosphere of Mars</span> Layer of gases surrounding the planet Mars

The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. The atmosphere of Mars is much thinner and colder than Earth's having a max density 20g/m3 with a temperature generally below zero down to -60 Celsius. The average surface pressure is about 610 pascals (0.088 psi) which is 0.6% of the Earth's value.

<span class="mw-page-title-main">Orbiting Carbon Observatory</span> Failed NASA climate satellite

The Orbiting Carbon Observatory (OCO) was a failed NASA satellite mission intended to provide global space-based observations of atmospheric carbon dioxide. The original spacecraft was lost in a launch failure on 24 February 2009, when the payload fairing of the Taurus rocket which was carrying it failed to separate during ascent. The added mass of the fairing prevented the satellite from reaching orbit. It subsequently re-entered the atmosphere and crashed into the Indian Ocean near Antarctica. The replacement satellite, Orbiting Carbon Observatory-2, was launched 2 July 2014 aboard a Delta II rocket. The Orbiting Carbon Observatory-3, a stand-alone payload built from the spare OCO-2 flight instrument, was installed on the International Space Station's Kibō Exposed Facility in May 2019.

<span class="mw-page-title-main">Atmospheric infrared sounder</span> Science instrument on NASAs Aqua satellite

The atmospheric infrared sounder (AIRS) is one of six instruments flying on board NASA's Aqua satellite, launched on May 4, 2002. The instrument is designed to support climate research and improve weather forecasting.

Carbon monitoring as part of greenhouse gas monitoring refers to tracking how much carbon dioxide or methane is produced by a particular activity at a particular time. For example, it may refer to tracking methane emissions from agriculture, or carbon dioxide emissions from land use changes, such as deforestation, or from burning fossil fuels, whether in a power plant, automobile, or other device. Because carbon dioxide is the greenhouse gas emitted in the largest quantities, and methane is an even more potent greenhouse gas, monitoring carbon emissions is widely seen as crucial to any effort to reduce emissions and thereby slow climate change.

<span class="mw-page-title-main">Atmosphere of Titan</span>

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. Titan is the only natural satellite of a planet in the Solar System with an atmosphere that is denser than the atmosphere of Earth and is one of two moons with an atmosphere significant enough to drive weather. Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

<span class="mw-page-title-main">Greenhouse Gases Observing Satellite</span> Earth observation satellite

Greenhouse Gases Observing Satellite (GOSAT), also known as Ibuki, is an Earth observation satellite and the world's first satellite dedicated to greenhouse gas monitoring. It measures the densities of carbon dioxide and methane from 56,000 locations on the Earth's atmosphere. The GOSAT was developed by the Japan Aerospace Exploration Agency (JAXA) and launched on 23 January 2009, from the Tanegashima Space Center. Japan's Ministry of the Environment, and the National Institute for Environmental Studies (NIES) use the data to track gases causing the greenhouse effect, and share the data with NASA and other international scientific organizations.

<span class="mw-page-title-main">Soil Moisture Active Passive</span> NASA earth monitoring satellite that measures global soil moisture

Soil Moisture Active Passive (SMAP) is a NASA environmental monitoring satellite that measures soil moisture across the planet. It is designed to collect a global 'snapshot' of soil moisture every 2 to 3 days. With this frequency, changes from specific storms can be measured while also assessing impacts across seasons of the year. SMAP was launched on 31 January 2015. It was one of the first Earth observation satellites developed by NASA in response to the National Research Council's Decadal Survey.

<span class="mw-page-title-main">Greenhouse gas</span> Gas in an atmosphere with certain absorption characteristics

Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F).

Paul O. Wennberg is the R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering at the California Institute of Technology (Caltech). Until 2023, he was the director of the Ronald and Maxine Linde Center for Global Environmental Science. He served as the first chair of the Total Carbon Column Observing Network and a founding member of the Orbiting Carbon Observatory project, which created NASA's first spacecraft for analysis of carbon dioxide in the atmosphere. He was previously the principal investigator for the Mars Atmospheric Trace Molecule Occultation Spectrometer (MATMOS) to investigate trace gases in Mars's atmosphere.

<span class="mw-page-title-main">Greenhouse gas monitoring</span> Measurement of greenhouse gas emissions and levels

Greenhouse gas monitoring is the direct measurement of greenhouse gas emissions and levels. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry. Methane and nitrous oxide are measured by other instruments. Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and networks of ground stations such as the Integrated Carbon Observation System.

<span class="mw-page-title-main">Total Carbon Column Observing Network</span> Global network monitoring greenhouse gases

The Total Carbon Column Observing Network (TCCON) is a global network of instruments that measure the amount of carbon dioxide, methane, carbon monoxide, nitrous oxide and other trace gases in the Earth's atmosphere. The TCCON began in 2004 with the installation of the first instrument in Park Falls, Wisconsin, USA, and has since grown to 23 operational instruments worldwide, with 7 former sites.

<span class="mw-page-title-main">Orbiting Carbon Observatory 2</span> NASA climate satellite

Orbiting Carbon Observatory-2 (OCO-2) is an American environmental science satellite which launched on 2 July 2014. A NASA mission, it is a replacement for the Orbiting Carbon Observatory which was lost in a launch failure in 2009. It is the second successful high-precision CO2 observing satellite, after GOSAT.

TanSat, also known as CarbonSat, is a Chinese Earth observation satellite dedicated to monitoring carbon dioxide in Earth's atmosphere. It is generally classified as a minisatellite, and is the first dedicated carbon mission of the Chinese space program. The mission was formally proposed in 2010, and work began in January 2011. It is funded by the Ministry of Science and Technology (MOST) and was built by the Shanghai Institute of Microsystem And Information Technology (SIMIT).

<span class="mw-page-title-main">Space-based measurements of carbon dioxide</span> Used to help answer questions about Earths carbon cycle

Space-based measurements of carbon dioxide are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure CO2 was the Interferometric Monitor for Greenhouse Gases (IMG) on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision satellites. Different instrument designs may reflect different primary missions.

<span class="mw-page-title-main">Orbiting Carbon Observatory 3</span>

The Orbiting Carbon Observatory-3 (OCO-3) is a NASA-JPL instrument designed to measure carbon dioxide in Earth's atmosphere. The instrument is mounted on the Japanese Experiment Module-Exposed Facility on board the International Space Station (ISS). OCO-3 was scheduled to be transported to space by a SpaceX Dragon from a Falcon 9 rocket on 30 April 2019, but the launch was delayed to 3 May, due to problems with the space station's electrical power system. This launch was further delayed to 4 May due to electrical issues aboard Of Course I Still Love You (OCISLY), the barge used to recover the Falcon 9’s first stage. OCO-3 was launched as part of CRS-17 on 4 May 2019 at 06:48 UTC. The nominal mission lifetime is ten years.

Moustafa T. Chahine was an atmospheric scientist and an international leader in atmospheric remote sensing using satellite observations. He was the Science Team Leader for the Atmospheric Infrared Sounder on NASA's Earth Observing System Aqua satellite, and the Chairman of the Global Energy and Water Exchanges (GEWEX) Science Steering Group of the World Climate Research Program (WCRP).

References

  1. Buis, Alan (11 January 2018). "GeoCarb: A New View of Carbon Over the Americas". NASA . Retrieved 20 April 2019.
  2. Moore III, Berrien; Crowell, Sean (11 April 2017). "Watching the planet breathe: Studying Earth's carbon cycle from space". The Conversation . Retrieved 14 October 2017.
  3. Dean, Signe (9 December 2016). "NASA Will Launch GeoCARB To Measure Our Planet's Carbon Cycle". National Geographic . Retrieved 14 October 2017.
  4. 1 2 Cole, Steve (6 December 2016). "NASA Announces First Geostationary Vegetation, Atmospheric Carbon Mission". NASA . Retrieved 14 October 2017.
  5. 1 2 Foust, Jeff (16 February 2022). "NASA drops plans to fly Earth science instrument as commercial hosted payload". SpaceNews . Retrieved 17 February 2022.
  6. Crowell, Sean; Moore, Berrien (4–8 May 2020). The GeoCarb Mission. 22nd EGU General Assembly. ADS . Bibcode:2020EGUGA..2220213C . Retrieved 10 May 2021.
  7. "NASA to Cancel GeoCarb Mission, Expands Greenhouse Gas Portfolio". NASA (Press release). 29 November 2022. Retrieved 30 November 2022.
  8. GeoCarb instrument

Further reading