In the theory of causal structure on Lorentzian manifolds, Geroch's theorem or Geroch's splitting theorem (first proved by Robert Geroch) gives a topological characterization of globally hyperbolic spacetimes.
A Cauchy surface can possess corners, and thereby need not be a differentiable submanifold of the spacetime; it is however always continuous (and even Lipschitz continuous). By using the flow of a vector field chosen to be complete, smooth, and timelike, it is elementary to prove that if a Cauchy surface S is Ck-smooth then the spacetime is Ck-diffeomorphic to the product S × R, and that any two such Cauchy surfaces are Ck-diffeomorphic. [1]
Robert Geroch proved in 1970 that every globally hyperbolic spacetime has a Cauchy surface S, and that the homeomorphism (as a C0-diffeomorphism) to S × R can be selected so that every surface of the form S × {a} is a Cauchy surface and each curve of the form {s} × R is a continuous timelike curve. [2]
Various foundational textbooks, such as George Ellis and Stephen Hawking's The Large Scale Structure of Space-Time and Robert Wald's General Relativity , [3] asserted that smoothing techniques allow Geroch's result to be strengthened from a topological to a smooth context. However, this was not satisfactorily proved until work of Antonio Bernal and Miguel Sánchez in 2003. As a result of their work, it is known that every globally hyperbolic spacetime has a Cauchy surface which is smoothly embedded and spacelike. [4] As they proved in 2005, the diffeomorphism to S × R can be selected so that each surface of the form S × {a} is a spacelike smooth Cauchy surface and that each curve of the form {s} × R is a smooth timelike curve orthogonal to each surface S × {a}. [5]
The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity.
In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949, who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity which would replace GR, an idea which Stephen Hawking labeled the chronology protection conjecture. Others note that if every closed timelike curve in a given spacetime passes through an event horizon, a property which can be called chronological censorship, then that spacetime with event horizons excised would still be causally well behaved and an observer might not be able to detect the causal violation.
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.
The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.
In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in a vacuum with vanishing cosmological constant.
The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales - even when the latter theory states that it should be possible. The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation.
In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field. It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface.
In the mathematical field of Lorentzian geometry, a Cauchy surface is a certain kind of submanifold of a Lorentzian manifold. In the application of Lorentzian geometry to the physics of general relativity, a Cauchy surface is usually interpreted as defining an "instant of time". In the mathematics of general relativity, Cauchy surfaces provide boundary conditions for the causal structure in which the Einstein equations can be solved
The positive energy theorem refers to a collection of foundational results in general relativity and differential geometry. Its standard form, broadly speaking, asserts that the gravitational energy of an isolated system is nonnegative, and can only be zero when the system has no gravitating objects. Although these statements are often thought of as being primarily physical in nature, they can be formalized as mathematical theorems which can be proven using techniques of differential geometry, partial differential equations, and geometric measure theory.
In general relativity, a congruence is the set of integral curves of a vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.
In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward.
In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold. It is called hyperbolic in analogy with the linear theory of wave propagation, where the future state of a system is specified by initial conditions. This is relevant to Albert Einstein's theory of general relativity, and potentially to other metric gravitational theories.
The initial value formulation of general relativity is a reformulation of Albert Einstein's theory of general relativity that describes a universe evolving over time.
In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.
In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.
Robert Bartnik was an Australian mathematician based at Monash University. He was known for his contributions to the rigorous mathematical study of general relativity. He received his bachelor's and master's degrees from Melbourne University and a PhD in mathematics from Princeton University in 1983, where his advisor was Shing-Tung Yau. In 2004 he was elected to the Australian Academy of Science, with citation:
Professor Bartnik is renowned internationally for the application of geometric analysis to mathematical problems arising in Einstein's theory of general relativity. His work is characterised by his ability to uncover new and anticipated phenomena in space-time geometry, often employing sophisticated tools from linear and nonlinear partial differential equations as well as elaborate numerical computations. He has contributed greatly to our understanding of the properties of the Einstein equations and gravitation.
Yvonne Choquet-Bruhat is a French mathematician and physicist. She has made seminal contributions to the study of Einstein's general theory of relativity, by showing that the Einstein equations can be put into the form of an initial value problem which is well-posed. In 2015, her breakthrough paper was listed by the journal Classical and Quantum Gravity as one of thirteen 'milestone' results in the study of general relativity, across the hundred years in which it had been studied.
Closed trapped surfaces are a concept used in black hole solutions of general relativity which describe the inner region of an event horizon. Roger Penrose defined the notion of closed trapped surfaces in 1965. A trapped surface is one where light is not moving away from the black hole. The boundary of the union of all trapped surfaces around a black hole is called an apparent horizon.
Sources