Ghana Satellite Earth Station

Last updated
Ghana Satellite Earth Station
Ghana satellite earth station.jpg
Organization
Location Kuntunse, Greater Accra Region, Ga West Municipal District, Ghana OOjs UI icon edit-ltr-progressive.svg
Coordinates 5°45′01″N0°18′19″W / 5.75028°N 0.30514°W / 5.75028; -0.30514
Telescopes
  • AVN-Ghana 32m telescope  OOjs UI icon edit-ltr-progressive.svg
Ghana physical map.svg
Red pog.svg
Location of Ghana Satellite Earth Station
  Commons-logo.svg Related media on Commons

The Ghana Satellite Earth Station is the largest satellite station in Ghana. The satellite station is situated at Kuntunse, on the Accra - Nsawam Road, [1] [2] a suburb of Accra in the Greater Accra Region. The satellite station has five receiver dishes:

The station is managed by Vodafone Ghana, after the Ghana government partnered with the Vodafone telco company.

In 2017 it was announced the 32-meter (105 feet) former communications antenna has begun work as an astronomical radio telescope. The telescope's "first light" science observations included methanol maser detections, pulsar observations and VLBI fringe testing. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Telecommunications in Ghana</span> Telecommunication in Ghana

Telecommunications in Ghana include radio, television, fixed and mobile telephones, and the Internet.

<span class="mw-page-title-main">Goonhilly Satellite Earth Station</span> Radiocommunication site in Cornwall, England

Goonhilly Satellite Earth Station is a large radiocommunication site located on Goonhilly Downs near Helston on the Lizard peninsula in Cornwall, England. Owned by Goonhilly Earth Station Ltd under a 999-year lease from BT Group plc, it was at one time the largest satellite earth station in the world, with more than 30 communication antennas and dishes in use. The site also links into undersea cable lines.

<span class="mw-page-title-main">Satellite</span> Objects intentionally placed into orbit

A satellite or artificial satellite is an object intentionally placed into orbit around a celestial body. Satellites have a variety of uses, including communication relay, weather forecasting, navigation (GPS), broadcasting, scientific research, and Earth observation. Additional military uses are reconnaissance, early warning, signals intelligence and, potentially, weapon delivery. Other satellites include the final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct.

<span class="mw-page-title-main">Cassegrain antenna</span> Type of parabolic antenna with a convex secondary reflector

In telecommunications and radar, a Cassegrain antenna is a parabolic antenna in which the feed antenna is mounted at or behind the surface of the concave main parabolic reflector dish and is aimed at a smaller convex secondary reflector suspended in front of the primary reflector. The beam of radio waves from the feed illuminates the secondary reflector, which reflects it back to the main reflector dish, which reflects it forward again to form the desired beam. The Cassegrain design is widely used in parabolic antennas, particularly in large antennas such as those in satellite ground stations, radio telescopes, and communication satellites.

<span class="mw-page-title-main">Communications satellite</span> Artificial satellite that relays radio signals

A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. Many communications satellites are in geostationary orbit 22,300 miles (35,900 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form satellite constellations in low Earth orbit, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.

<span class="mw-page-title-main">Radio telescope</span> Directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.

<span class="mw-page-title-main">Parabolic reflector</span> Reflector that has the shape of a paraboloid

A parabolicreflector is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave travelling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.

<span class="mw-page-title-main">Goldstone Deep Space Communications Complex</span> US observatory near Barstow, California

The Goldstone Deep Space Communications Complex (GDSCC), commonly called the Goldstone Observatory, is a satellite ground station located in Fort Irwin in the U.S. state of California. Operated by NASA's Jet Propulsion Laboratory (JPL), its main purpose is to track and communicate with interplanetary space missions. It is named after Goldstone, California, a nearby gold-mining ghost town.

<span class="mw-page-title-main">Square Kilometre Array</span> Radio telescope under construction in Australia and South Africa

The Square Kilometre Array (SKA) is an intergovernmental international radio telescope project being built in Australia (low-frequency) and South Africa (mid-frequency). The combining infrastructure, the Square Kilometre Array Observatory (SKAO), and headquarters, are located at the Jodrell Bank Observatory in the United Kingdom. The SKA cores are being built in the southern hemisphere, where the view of the Milky Way galaxy is the best and radio interference at its least.

<span class="mw-page-title-main">Onsala Space Observatory</span> Observatory

Onsala Space Observatory (OSO), the Swedish National Facility for Radio Astronomy, provides scientists with equipment to study the Earth and the rest of the Universe. The observatory operates two radio telescopes in Onsala, 45 km south of Gothenburg, and takes part in several international projects. Examples of activities:

<span class="mw-page-title-main">HALCA</span> Japanese space radio telescope

HALCA, also known for its project name VSOP, the code name MUSES-B, or just Haruka (はるか) was a Japanese 8 meter diameter radio telescope satellite which was used for Very Long Baseline Interferometry (VLBI). It was the first such space-borne dedicated VLBI mission.

<span class="mw-page-title-main">Allen Telescope Array</span> Radio telescope array

The Allen Telescope Array (ATA), formerly known as the One Hectare Telescope (1hT), is a radio telescope array dedicated to astronomical observations and a simultaneous search for extraterrestrial intelligence (SETI). The array is situated at the Hat Creek Radio Observatory in Shasta County, 290 miles (470 km) northeast of San Francisco, California.

Sugar Grove Station is a National Security Agency (NSA) communications site located near Sugar Grove in Pendleton County, West Virginia. According to a 2005 article in The New York Times, the site intercepts all international communications entering the Eastern United States. Activities at the site previously involved the Navy Information Operations Command (NAVIOCOM). In April 2013, the Chief of Naval Operations ordered that the NAVIOCOM support base be closed by September 30, 2015, as "a result of the determination by the resource sponsor National Security Agency to relocate the command's mission." The naval base is being repurposed as a privately owned healthcare facility for veterans, while the NSA listening station, to the south, continues to operate.

<span class="mw-page-title-main">Algonquin Radio Observatory</span> Research facility in Ontario, Canada

The Algonquin Radio Observatory (ARO) is a radio observatory located in Algonquin Provincial Park in Ontario, Canada. It opened in 1959 in order to host a number of the National Research Council of Canada's (NRC) ongoing experiments in a more radio-quiet location than Ottawa.

<span class="mw-page-title-main">Satellite television</span> Broadcasting of television using artificial satellites

Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.

<span class="mw-page-title-main">Vodafone Ghana</span>

Vodafone Ghana, formerly Ghana Telecom, is the national telecommunications company of Ghana.

<span class="mw-page-title-main">Spektr-R</span> Russian satellite

Spektr-R was a Russian scientific satellite with a 10 m (33 ft) radio telescope on board. It was launched on 18 July 2011 on a Zenit-3F launcher from Baikonur Cosmodrome, and was designed to perform research on the structure and dynamics of radio sources within and beyond the Milky Way. Together with some of the largest ground-based radio telescopes, the Spektr-R formed interferometric baselines extending up to 350,000 km (220,000 mi).

<span class="mw-page-title-main">Warkworth Radio Astronomical Observatory</span> Observatory

The Warkworth Radio Astronomical Observatory is a radio telescope observatory, located just south of Warkworth, New Zealand, about 50 km north of the Auckland CBD. It is operated by the Institute for Radio Astronomy and Space Research, Auckland University of Technology. The WARK12M 12m Radio Telescope was constructed in 2008. In 2010, a licence to operate the Telecom New Zealand 30m dish was granted, which led to the commissioning of the WARK30M 30m Radio Telescope. The first observations made in conjunction with the Australian Long Baseline Array took place in 2011.

<span class="mw-page-title-main">Ghana Space Science and Technology Centre</span>

The domain of international space politics gained significant traction during the Cold War. This was largely fuelled by the ongoing space race between the USA and the USSR. At this time in history, space exploration was an endeavour largely restricted to the global superpowers and seemed out of reach for many smaller, developing, nations to actively participate in. Subsequently, public concerns for the cost of research and development into novel space technologies did not receive sufficient policy and academic attention in Africa. As the Cold War reached its conclusion, political power began to diffuse across the world, and this led to many smaller nation states developing national and regional space capabilities. In the context of Africa, Nigeria, Algeria, Egypt and South Africa were the front-runners in terms of investments into space-related research and development.

References

  1. "Satellite Earth". www.abpconsult.com. Archived from the original on 4 March 2016. Retrieved 18 June 2017.
  2. Boateng, Kwasi. "Satellite Communication in Ghana-challenges and prospects" (PDF). Retrieved 7 March 2015.
  3. "Old Communications Dish Born Again as Radio Telescope in Africa". Space.com .
  4. Wild, Sarah (11 May 2017). "Ghana telescope heralds first pan-African array". Nature News. Vol. 545, no. 7653. p. 144. doi:10.1038/545144a.