Glowing Plant project

Last updated

The Glowing Plant project was the first crowdfunding campaign for a synthetic biology application. The project was started by the Sunnyvale-based hackerspace Biocurious as part of the DIYbio philosophy. According to the project's goals, funds were used to create a glowing Arabidopsis thaliana plant using firefly luminescence genes. Long-term ambitions (never realized) included the development of glowing trees that can be used to replace street lights, reducing CO2 emissions by not requiring electricity.

Contents

In 2023 this concept was finally achieved, commercialized, and brought to market by Light Bio, [1] who used a fungal luminescence gene in petunias to achieve the first commercially available luminescent plants. These are currently only available in the US (as of 2024)

Project funding

Using Kickstarter, the project's founders raised $484,000 on June 8, 2013. [2] This was significantly more than the initial target of $65,000.

Seeds were initially scheduled to be delivered in April 2014, and subsequently scheduled for the fall of 2014. [3] In March 2016, delivery of seeds was forecast for 2016 on the Glowing Plant website. The company encountered difficulty in producing plants that emit significant amounts of light, resulting in a transition to producing moss that emits a patchouli scent. [4] They later announced via email December 2017 that the company was permanently ceasing operations.

Methods

Biocurious planned to tweak the biobrick containing six genes, including luciferin-regenerating enzyme and luciferase from fireflies. [5] [6] During initial development, they would use Agrobacterium to test the transfer of the genetic circuit. When producing the final product, they intended to instead use a gene gun to avoid issues related to regulation of GM plants. [4] Over the course of the project, several plants were mentioned as being recipients, including Arabidopsis thaliana, Nicotiana tabacum , and roses. [6] Issues surrounding the production included the difficulty of moving the six component genes of the metabolic pathway, increasing the dim light produced by the plant following insertion, and preventing the pathway from being silenced. [4]

Controversy

The project generated widespread media attention and a discussion of appropriate uses of biotechnology. [7] As a result of the controversy, Kickstarter decided to prohibit genetically modified organisms as rewards to project backers. [8]

Though the Animal and Plant Health Inspection Service (APHIS) has shown no regulatory concerns about the project, some synthetic biologists and policy researchers have questioned the project's feasibility and impact on future oversight or public opinion of synthetic biology. In particular, if the company were to encourage backers to use a genetic DIY kit themselves, additional regulatory oversight would likely occur. [9]

See also

Related Research Articles

<i>Arabidopsis thaliana</i> Model plant species in the family Brassicaceae

Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family (Brassicaceae), native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally considered a weed.

<span class="mw-page-title-main">Bioluminescence</span> Emission of light by a living organism

Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.

<span class="mw-page-title-main">Chemiluminescence</span> Emission of light as a result of a chemical reaction

Chemiluminescence is the emission of light (luminescence) as the result of a chemical reaction, i.e. a chemical reaction results in a flash or glow of light. A standard example of chemiluminescence in the laboratory setting is the luminol test. Here, blood is indicated by luminescence upon contact with iron in hemoglobin. When chemiluminescence takes place in living organisms, the phenomenon is called bioluminescence. A light stick emits light by chemiluminescence.

<span class="mw-page-title-main">Luciferase</span> Enzyme family

Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words luciferin and luciferase, for the substrate and enzyme, respectively. Both words are derived from the Latin word lucifer, meaning "lightbearer", which in turn is derived from the Latin words for "light" (lux) and "to bring or carry" (ferre).

A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While genome projects have identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how those genes function.

<span class="mw-page-title-main">Trichome</span> Fine hair-like growth on plants

Trichomes are fine outgrowths or appendages on plants, algae, lichens, and certain protists. They are of diverse structure and function. Examples are hairs, glandular hairs, scales, and papillae. A covering of any kind of hair on a plant is an indumentum, and the surface bearing them is said to be pubescent.

<span class="mw-page-title-main">Acetolactate synthase</span> Class of enzymes

The acetolactate synthase (ALS) enzyme is a protein found in plants and micro-organisms. ALS catalyzes the first step in the synthesis of the branched-chain amino acids.

The repressilator is a genetic regulatory network consisting of at least one feedback loop with at least three genes, each expressing a protein that represses the next gene in the loop. In biological research, repressilators have been used to build cellular models and understand cell function. There are both artificial and naturally-occurring repressilators. Recently, the naturally-occurring repressilator clock gene circuit in Arabidopsis thaliana and mammalian systems have been studied.

Evolutionary developmental biology (evo-devo) is the study of developmental programs and patterns from an evolutionary perspective. It seeks to understand the various influences shaping the form and nature of life on the planet. Evo-devo arose as a separate branch of science rather recently. An early sign of this occurred in 1999.

<span class="mw-page-title-main">Protochlorophyllide</span> Chemical compound

Protochlorophyllide, or monovinyl protochlorophyllide, is an intermediate in the biosynthesis of chlorophyll a. It lacks the phytol side-chain of chlorophyll and the reduced pyrrole in ring D. Protochlorophyllide is highly fluorescent; mutants that accumulate it glow red if irradiated with blue light. In angiosperms, the later steps which convert protochlorophyllide to chlorophyll are light-dependent, and such plants are pale (chlorotic) if grown in the darkness. Gymnosperms, algae, and photosynthetic bacteria have another, light-independent enzyme and grow green in the darkness as well.

Do-it-yourself biology is a biotechnological social movement in which individuals, communities, and small organizations study biology and life science using the same methods as traditional research institutions. DIY biology is primarily undertaken by individuals with limited research training from academia or corporations, who then mentor and oversee other DIY biologists with little or no formal training. This may be done as a hobby, as a not-for-profit endeavor for community learning and open-science innovation, or for profit, to start a business.

<span class="mw-page-title-main">Phototropism</span> Growth of a plant in response to a light stimulus

In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism occurs. This causes the plant to have elongated cells on the furthest side from the light. Phototropism is one of the many plant tropisms, or movements, which respond to external stimuli. Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism. Negative phototropism is not to be confused with skototropism, which is defined as the growth towards darkness, whereas negative phototropism can refer to either the growth away from a light source or towards the darkness. Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth. Some vine shoot tips exhibit negative phototropism, which allows them to grow towards dark, solid objects and climb them. The combination of phototropism and gravitropism allow plants to grow in the correct direction.

Cambrian Genomics was a biotechnology company based in San Francisco which used a laser-based technique to synthesize DNA. Cambrian Genomics produced genetic material for a 2013 effort to produce genetically modified glowing plants for sale to the public. A Kickstarter campaign raised $500,000 for the Glowing Plant project.

LUX or Phytoclock1 (PCL1) is a gene that codes for LUX ARRHYTHMO, a protein necessary for circadian rhythms in Arabidopsis thaliana. LUX protein associates with Early Flowering 3 (ELF3) and Early Flowering 4 (ELF4) to form the Evening Complex (EC), a core component of the Arabidopsis repressilator model of the plant circadian clock. The LUX protein functions as a transcription factor that negatively regulates Pseudo-Response Regulator 9 (PRR9), a core gene of the Midday Complex, another component of the Arabidopsis repressilator model. LUX is also associated with circadian control of hypocotyl growth factor genes PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME INTERACTING FACTOR 5 (PIF5).

Arabidopsis thaliana is a first class model organism and the single most important species for fundamental research in plant molecular genetics.

BioCurious is a community biology laboratory and nonprofit organization located in Sunnyvale, California, co-founded by Eri Gentry, Kristina Hathaway, Josh Perfetto, Raymond McCauley, Joseph Jackson, and Tito Jankowski. With the help of Kickstarter and 239 backers they raised $35,319. BioCurious is a complete working laboratory and technical library for entrepreneurs to access equipment, materials, and co-working space, and a meeting place for citizen scientists, hobbyists, activists, and students. Scientific American magazine has described BioCurious as "one of country’s premier community biotechnology labs [...]".

Sudip Chattopadhyay is an Indian developmental biologist, biotechnologist and the dean of research and consultancy at the National Institute of Technology, Durgapur. Known for his studies on the molecular basis of light-controlled plant growth and development, Chattopadhyay is a J. C. Bose National Fellow of the Science and Engineering Research Board (SERB) and an elected fellow of all the three major Indian science academies namely Indian National Science Academy, Indian Academy of Sciences and National Academy of Sciences, India. The Department of Biotechnology of the Government of India awarded him the National Bioscience Award for Career Development, one of the highest Indian science awards, for his contributions to biosciences in 2005.

<span class="mw-page-title-main">Sexual selection in Arabidopsis thaliana</span> Mode of natural selection in plants

Sexual selection in Arabidopsis thaliana is a mode of natural selection by which the flowering plant Arabidopsis thaliana selects mates to maximize reproductive success.

EARLY FLOWERING 3 (ELF3) is a plant-specific gene that encodes the hydroxyproline-rich glycoprotein and is required for the function of the circadian clock. ELF3 is one of the three components that make up the Evening Complex (EC) within the plant circadian clock, in which all three components reach peak gene expression and protein levels at dusk. ELF3 serves as a scaffold to bind EARLY FLOWERING 4 (ELF4) and LUX ARRHYTHMO (LUX), two other components of the EC, and functions to control photoperiod sensitivity in plants. ELF3 also plays an important role in temperature and light input within plants for circadian clock entrainment. Additionally, it plays roles in light and temperature signaling that are independent from its role in the EC.

Stacey Harmer is a chronobiologist whose work centers on the study of circadian rhythms in plants. Her research focuses on the molecular workings of the plant circadian clock and its influences on plant behaviors and physiology. She is a professor in the Department of Plant Biology at the University of California, Davis.

References

  1. Glowing Plants: Natural Lighting with no Electricity by Antony Evans — Kickstarter
  2. "Progress to date". Glowing Plant website. Archived from the original on 2014-10-02. Retrieved 2 October 2014.
  3. 1 2 3 "Why Kickstarter's Glowing Plant Left Backers in the Dark". MIT Technology Review. Retrieved 2022-04-04.
  4. "Team:Cambridge/Bioluminescence - 2010.igem.org". 2010.igem.org. Retrieved 2022-04-04.
  5. 1 2 Regalado, Antonio (July 15, 2016). "Why Kickstarter's Glowing Plant Left Backers in the Dark". MIT Technology Review.
  6. Ariana Eunjung Cha (October 5, 2013). "Glowing plants spark environmental debate". The Seattle Times. Archived from the original on October 20, 2014. Retrieved 21 September 2014.
  7. David Holmes (August 2, 2013). "Why did Kickstarter ban GMOs?". PandoDaily.
  8. Ikemoto, Lisa (2017). DIY Bio: Hacking Life in Biotech's Backyard. UC Davis School of Law. pp. 558–559.