Graph pebbling

Last updated

Graph pebbling is a mathematical game played on a graph with zero or more pebbles on each of its vertices. 'Game play' is composed of a series of pebbling moves. A pebbling move on a graph consists of choosing a vertex with at least two pebbles, removing two pebbles from it, and adding one to an adjacent vertex (the second removed pebble is discarded from play). π(G), the pebbling number of a graph G, is the lowest natural number n that satisfies the following condition:

Contents

Given any target or 'root' vertex in the graph and any initial configuration of n pebbles on the graph, it is possible, after a possibly-empty series of pebbling moves, to reach a new configuration in which the designated root vertex has one or more pebbles.

For example, on a graph with 2 vertices and 1 edge connecting them the pebbling number is 2. No matter how the two pebbles are placed on the vertices of the graph it is always possible to arrive at the desired result of the chosen vertex having a pebble; if the initial configuration is the configuration with one pebble per vertex, then the objective is trivially accomplished with zero pebbling moves. One of the central questions of graph pebbling is the value of π(G) for a given graph G.

Other topics in pebbling include cover pebbling, optimal pebbling, domination cover pebbling, bounds, and thresholds for pebbling numbers, as well as deep graphs.

One application of pebbling games is in the security analysis of memory-hard functions in cryptography. [1]

π(G) the pebbling number of a graph

The game of pebbling was first suggested by Lagarias and Saks, as a tool for solving a particular problem in number theory. In 1989 F.R.K. Chung introduced the concept in the literature [2] and defined the pebbling number, π(G).

The pebbling number for a complete graph on n vertices is easily verified to be n: If we had (n  1) pebbles to put on the graph, then we could put one pebble on each vertex except the target. As no vertex has two or more pebbles, no moves are possible, so it is impossible to place a pebble on the target. Thus, the pebbling number must be greater than n  1. Given n pebbles, there are two possible cases. If each vertex has one pebble, no moves are required. If any vertex is bare, at least one other vertex must have two pebbles on it, and one pebbling move allows a pebble to be added to any target vertex in the complete graph. [2]

π(G) for families of graphs

The pebbling number is known for the following families of graphs:

Graham's pebbling conjecture

Unsolved problem in mathematics:

Is the pebbling number of a Cartesian product of graphs at most the product of the pebbling number of the graphs?

Chung (1989) credited Ronald Graham with the conjecture that the pebbling number of a Cartesian product of graphs is at most equal to the product of the pebbling numbers of the factors in the product. [3] This has come to be known as Graham's pebbling conjecture. As of 2019, it remains unsolved, although special cases are known. [4]

γ(G) the cover pebbling number of a graph

Crull et al. introduced the concept of cover pebbling. γ(G), the cover pebbling number of a graph is the minimum number of pebbles needed so that from any initial arrangement of the pebbles, after a series of pebbling moves, the graph is covered: there is at least one pebble on every vertex. [5] A result called the stacking theorem finds the cover pebbling number for any graph. [6] [7]

The stacking theorem

According to the stacking theorem, the initial configuration of pebbles that requires the most pebbles to be cover solved happens when all pebbles are placed on a single vertex. Based on this observation, define

for every vertex v in G, where d(u, v) denotes the distance from u to v. Then the cover pebbling number is the largest s(v) that results.

γ(G) for families of graphs

The cover pebbling number is known for the following families of graphs:

See also

Related Research Articles

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

In combinatorics, the Dinitz theorem is a statement about the extension of arrays to partial Latin squares, proposed in 1979 by Jeff Dinitz, and proved in 1994 by Fred Galvin.

<span class="mw-page-title-main">Dominating set</span> Subset of a graphs nodes such that all other nodes link to at least one

In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is either in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.

<span class="mw-page-title-main">Kneser graph</span> Graph whose vertices correspond to combinations of a set of n elements

In graph theory, the Kneser graphK(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956.

<span class="mw-page-title-main">Cartesian product of graphs</span> Operation in graph theory

In graph theory, the Cartesian productGH of graphs G and H is a graph such that:

<span class="mw-page-title-main">Tensor product of graphs</span> Operation in graph theory

In graph theory, the tensor productG × H of graphs G and H is a graph such that

In the mathematical area of graph theory, the Mycielskian or Mycielski graph of an undirected graph is a larger graph formed from it by a construction of Jan Mycielski (1955). The construction preserves the property of being triangle-free but increases the chromatic number; by applying the construction repeatedly to a triangle-free starting graph, Mycielski showed that there exist triangle-free graphs with arbitrarily large chromatic number.

In graph theory, Vizing's conjecture concerns a relation between the domination number and the cartesian product of graphs. This conjecture was first stated by Vadim G. Vizing (1968), and states that, if γ(G) denotes the minimum number of vertices in a dominating set for the graph G, then

<span class="mw-page-title-main">Strong product of graphs</span> Binary operation in graph theory

In graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs.

<span class="mw-page-title-main">Laman graph</span>

In graph theory, the Laman graphs are a family of sparse graphs describing the minimally rigid systems of rods and joints in the plane. Formally, a Laman graph is a graph on n vertices such that, for all k, every k-vertex subgraph has at most 2k − 3 edges, and such that the whole graph has exactly 2n − 3 edges. Laman graphs are named after Gerard Laman, of the University of Amsterdam, who in 1970 used them to characterize rigid planar structures. This characterization, however, had already been discovered in 1927 by Hilda Geiringer.

<span class="mw-page-title-main">Greedy coloring</span> One-by-one assignment of colors to graph vertices

In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but they do not, in general, use the minimum number of colors possible.

<span class="mw-page-title-main">Windmill graph</span> Graph family made by joining complete graphs at a universal node

In the mathematical field of graph theory, the windmill graphWd(k,n) is an undirected graph constructed for k ≥ 2 and n ≥ 2 by joining n copies of the complete graph Kk at a shared universal vertex. That is, it is a 1-clique-sum of these complete graphs.

In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich.

<span class="mw-page-title-main">Sumner's conjecture</span>

Sumner's conjecture states that every orientation of every -vertex tree is a subgraph of every -vertex tournament. David Sumner, a graph theorist at the University of South Carolina, conjectured in 1971 that tournaments are universal graphs for polytrees. The conjecture was proven for all large by Daniela Kühn, Richard Mycroft, and Deryk Osthus.

<span class="mw-page-title-main">K-tree</span>

In graph theory, a k-tree is an undirected graph formed by starting with a (k + 1)-vertex complete graph and then repeatedly adding vertices in such a way that each added vertex v has exactly k neighbors U such that, together, the k + 1 vertices formed by v and U form a clique.

In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T. Tutte (1963), states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals. Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs.

<span class="mw-page-title-main">Universal vertex</span> Vertex adjacent to all others in a graph

In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph.

In mathematics, the second neighborhood problem is an unsolved problem about oriented graphs posed by Paul Seymour. Intuitively, it suggests that in a social network described by such a graph, someone will have at least as many friends-of-friends as friends.

Hunter Snevily (1956–2013) was an American mathematician with expertise and contributions in Set theory, Graph theory, Discrete geometry, and Ramsey theory on the integers.

References

  1. Alwen, Joël; Serbinenko, Vladimir (2014), High Parallel Complexity Graphs and Memory-Hard Functions , retrieved 2024-01-15
  2. 1 2 3 4 Chung, Fan R. K. (1989). "Pebbling in hypercubes". SIAM Journal on Discrete Mathematics. 2 (4): 467–472. doi:10.1137/0402041. MR   1018531.
  3. See Chung (1989), question 3, page 472.
  4. Pleanmani, Nopparat (2019). "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph". Discrete Mathematics, Algorithms and Applications. 11 (6): 1950068, 7. doi:10.1142/s179383091950068x. MR   4044549. S2CID   204207428.
  5. Crull, Betsy; Cundiff, Tammy; Feltman, Paul; Hurlbert, Glenn H.; Pudwell, Lara; Szaniszlo, Zsuzsanna; Tuza, Zsolt (2005), "The cover pebbling number of graphs" (PDF), Discrete Mathematics, 296 (1): 15–23, arXiv: math/0406206 , doi:10.1016/j.disc.2005.03.009, MR   2148478, S2CID   5109099
  6. Vuong, Annalies; Wyckoff, M. Ian (October 18, 2004). "Conditions for Weighted Cover Pebbling of Graphs". arXiv: math/0410410 .
  7. Sjöstrand, Jonas (2005). "The cover pebbling theorem". Electronic Journal of Combinatorics. 12: Note 22. doi: 10.37236/1989 . MR   2180807.
  8. Watson, Nathaniel G.; Yerger, Carl R. (2006). "Cover pebbling numbers and bounds for certain families of graphs". Bulletin of the Institute of Combinatorics and Its Applications. 48: 53–62. arXiv: math/0409321 . MR   2259702.

Further reading