Proof of space (PoS) is a type of consensus algorithm achieved by demonstrating one's legitimate interest in a service (such as sending an email) by allocating a non-trivial amount of memory or disk space to solve a challenge presented by the service provider. The concept was formulated in 2013 by Dziembowski et al. [1] [2] and (with a different formulation) by Ateniese et al.. [3] [4] Proofs of space are very similar to proofs of work (PoW), except that instead of computation, storage is used to earn cryptocurrency. Proof-of-space is different from memory-hard functions in that the bottleneck is not in the number of memory access events, but in the amount of memory required.
After the release of Bitcoin, alternatives to its PoW mining mechanism were researched, and PoS was studied in the context of cryptocurrencies. Proofs of space are seen as fairer and greener alternatives by blockchain enthusiasts due to the general-purpose nature of storage and the lower energy cost required by storage.
In 2014, Signum (formerly Burstcoin) became the first practical implementation of a PoS (initially as proof of capacity) blockchain technology [5] and is still actively developed. Other than Signum, several theoretical and practical implementations of PoS have been released and discussed, such as SpaceMint and Chia, but some were criticized for increasing demand and shortening the life of storage devices due to greater disc reading requirements than Signum. [6] [7]
A proof-of-space is a piece of data that a prover sends to a verifier to prove that the prover has reserved a certain amount of space. For practicality, the verification process needs to be efficient, namely, consume a small amount of space and time. For security, it should be hard for the prover to pass the verification if it does not actually reserve the claimed amount of space.
One way of implementing PoS is by using hard-to-pebble graphs. [2] [8] The verifier asks the prover to build a labeling of a hard-to-pebble graph. The prover commits to the labeling. The verifier then asks the prover to open several random locations in the commitment.
A proof of storage (also proof of retrievability, proof of data possession) is related to a proof-of-space, but instead of showing that space is available for solving a puzzle, the prover shows that space is actually used to store a piece of data correctly at the time of proof.[ citation needed ]
A proof of capacity is a system where miners are allowed to pre-calculate ("plot") PoW functions and store them onto the HDD. The first implementation of proof of capacity was Signum (formerly burstcoin). [9]
The Proof of Capacity (PoC) consensus algorithm is used in some cryptocurrencies. Conditional Proof of Capacity (CPOC) [10] is an improved version of PoC. It has a work, stake, and capacity system that works like the PoW, PoS, and PoC algorithms. By pledging their digital assets, users receive a higher income as a reward. Additionally, CPOC has designed a new reward measure for top users. In this algorithm, miners add a conditional component to the proof by ensuring that their plot file contains specific data related to the previous block. This additional condition enhances the security and decentralization of the consensus mechanism beyond traditional proof-of-capacity algorithms.
A proof of space-time (PoST) is a proof that shows the prover has spent an amount of time keeping the reserved space unchanged. Its creators reason that the cost of storage is inextricably linked not only to its capacity, but to the time in which that capacity is used. It is related to a proof-of-storage (but without necessarily storing any useful data), although the Moran-Orlov construction also allows a tradeoff between space and time. [11] The first implementation of PoST is with the Chia blockchain.
Proofs of space could be used as an alternative to proofs of work in the traditional client puzzle applications, such as anti-spam measures and denial of service attack prevention. Proof-of-Space has also been used for malware detection, by determining whether the L1 cache of a processor is empty (e.g., has enough space to evaluate the PoS routine without cache misses) or contains a routine that resisted being evicted. [12] [13]
The first blockchain to use hard disk based blockchain validation, established in 2014. Signum Proof of Capacity consumes disk space rather than computing resources to mine a block. Unlike PoW, where the miners keep changing the block header and hash to find the solution, proof of capacity (as implemented by Burstcoin, and developed further by Signum) generates random solutions, also called plots, using the Shabal cryptographic algorithm in advance and stores it on hard drives. This stage is called plotting, and it may take days or even weeks depending on the storage capacity of the drive. In the next stage - mining, miners match their solutions to the most recent puzzle and the node with the fastest solution gets to mine the next block. [14] [15]
In 2015, a paper proposed a cryptocurrency called SpaceMint. [16] It attempts to solve some of the practical design problems associated with the pebbling-based PoS schemes. In using PoS for decentralized cryptocurrency, the protocol has to be adapted to work in a non-interactive protocol since each individual in the network has to behave as a verifier. [16]
In 2018, a proposed cryptocurrency Chia presented two papers presenting a new protocol based on proof of space [17] and proof of time. [18]
In February 2021, Chia published a white paper outlining its business and has since launched its mainnet and Chia coin (XCH) using the Proof of Space Time concept. The spacetime model of Chia also depends on "plotting" (generation of proof-of-space files) to the storage medium to solve a puzzle. [19]
Unlike many proof-of-storage cryptocurrencies, Chia plots do not store any useful data. Also, Chia's proof-of-time method for plotting has raised concerns over shortened lifespans of solid-state drives due to the intensity of write activity involved in plot generation (typically, plotting occurs on an SSD and then the finished plots are transferred to a hard disk drive for long-term storage). [7]
Bram Cohen is an American computer programmer, best known as the author of the peer-to-peer (P2P) BitTorrent protocol in 2001, as well as the first file sharing program to use the protocol, also known as BitTorrent. He is also the co-founder of CodeCon and organizer of the San Francisco Bay Area P2P-hackers meeting, was the co-author of Codeville and creator of the Chia cryptocurrency which implements the proof of space-time consensus algorithm.
Proof of work (PoW) is a form of cryptographic proof in which one party proves to others that a certain amount of a specific computational effort has been expended. Verifiers can subsequently confirm this expenditure with minimal effort on their part. The concept was invented by Moni Naor and Cynthia Dwork in 1993 as a way to deter denial-of-service attacks and other service abuses such as spam on a network by requiring some work from a service requester, usually meaning processing time by a computer. The term "proof of work" was first coined and formalized in a 1999 paper by Markus Jakobsson and Ari Juels. The concept was adapted to digital tokens by Hal Finney in 2004 through the idea of "reusable proof of work" using the 160-bit secure hash algorithm 1 (SHA-1).
A fundamental problem in distributed computing and multi-agent systems is to achieve overall system reliability in the presence of a number of faulty processes. This often requires coordinating processes to reach consensus, or agree on some data value that is needed during computation. Example applications of consensus include agreeing on what transactions to commit to a database in which order, state machine replication, and atomic broadcasts. Real-world applications often requiring consensus include cloud computing, clock synchronization, PageRank, opinion formation, smart power grids, state estimation, control of UAVs, load balancing, blockchain, and others.
Non-interactive zero-knowledge proofs are cryptographic primitives, where information between a prover and a verifier can be authenticated by the prover, without revealing any of the specific information beyond the validity of the statement itself. This makes direct communication between the prover and verifier unnecessary, effectively removing any intermediaries.
Peercoin, also known as Peer-to-Peer Coin, PP Coin, or PPC, is a cryptocurrency utilizing both proof-of-stake and proof-of-work systems.
Proof-of-stake (PoS) protocols are a class of consensus mechanisms for blockchains that work by selecting validators in proportion to their quantity of holdings in the associated cryptocurrency. This is done to avoid the computational cost of proof-of-work (POW) schemes. The first functioning use of PoS for cryptocurrency was Peercoin in 2012, although the scheme, on the surface, still resembled a POW.
A distributed ledger is a system whereby replicated, shared, and synchronized digital data is geographically spread (distributed) across many sites, countries, or institutions. In contrast to a centralized database, a distributed ledger does not require a central administrator, and consequently does not have a single (central) point-of-failure.
Firo, formerly known as Zcoin, is a cryptocurrency aimed at using cryptography to provide better privacy for its users compared to other cryptocurrencies such as Bitcoin.
Cardano is a public blockchain platform. It is open-source and decentralized, with consensus achieved using proof of stake. It can facilitate peer-to-peer transactions with its internal cryptocurrency, ADA.
Filecoin (⨎) is an open-source, public cryptocurrency and digital payment system intended to be a blockchain-based cooperative digital storage and data retrieval method. It was developed by Protocol Labs and shares some ideas from InterPlanetary File System allowing users to rent unused hard drive space. A blockchain mechanism is used to register the deals. Filecoin is an open protocol and backed by a blockchain that records commitments made by the network’s participants, with transactions made using FIL, the blockchain's native currency. The blockchain is based on both proof-of-replication and proof-of-spacetime.
A blockchain is a shared database that records transactions between two parties in an immutable ledger. Blockchain documents and confirms pseudonymous ownership of all transactions in a verifiable and sustainable way. After a transaction is validated and cryptographically verified by other participants or nodes in the network, it is made into a "block" on the blockchain. A block contains information about the time the transaction occurred, previous transactions, and details about the transaction. Once recorded as a block, transactions are ordered chronologically and cannot be altered. This technology rose to popularity after the creation of Bitcoin, the first application of blockchain technology, which has since catalyzed other cryptocurrencies and applications.
TRON is a decentralized, blockchain-based operating system with smart contract functionality, proof-of-stake principles as its consensus algorithm and a cryptocurrency native to the system, known as Tronix (TRX). It was established in March 2014 by Justin Sun and since 2017 has been overseen and supervised by the TRON Foundation, a non-profit organization in Singapore, established in the same year. It is open-source software.
Avalanche is a decentralized, open-source proof of stake blockchain with smart contract functionality. AVAX is the native cryptocurrency of the platform.
Ouroboros is a family of proof-of-stake consensus protocols used in the Cardano and Polkadot blockchains. It can run both permissionless and permissioned blockchains.
Proof of personhood (PoP) is a means of resisting malicious attacks on peer to peer networks, particularly, attacks that utilize multiple fake identities, otherwise known as a Sybil attack. Decentralized online platforms are particularly vulnerable to such attacks by their very nature, as notionally democratic and responsive to large voting blocks. In PoP, each unique human participant obtains one equal unit of voting power, and any associated rewards.
Aggelos Kiayias FRSE is a Greek cryptographer and computer scientist, currently a professor at the University of Edinburgh and the Chief Science Officer at Input Output Global, the company behind Cardano.
Chia is a cryptocurrency where mining is based on the amount of hard disk storage space devoted to it rather than processing power as with proof of work cryptocurrencies such as Bitcoin. The platform was created by a California based company called Chia Network Inc. The Chia Network was founded in 2017 by American computer programmer Bram Cohen, the author of the BitTorrent protocol. In May 2021, Chia Network raised a $61 million investment, valuing the company at about $500 million. The same month, the company announced plans to conduct an IPO before the end of 2021. As of 2023, Chia had filed a draft registration with the Securities and Exchange Commission towards an IPO.
Algorand is a proof-of-stake blockchain and cryptocurrency. Algorand's native cryptocurrency is called ALGO.
Proof of identity (PoID) is a consensus protocol for permission-less blockchains, in which each uniquely identified individual receives one equal unit of voting power and associated rewards. The protocol is based on biometric identification, humanity identification parties and additional verification parties.
Chia Network Inc. is a US-based blockchain technology company. The company built the Chia blockchain that uses proof of space and proof of time consensus protocols and issues the digital currency Chia (XCH). Chia Network was founded in 2017 by Bram Cohen, the creator of BitTorrent, and Ryan Singer. Its headquarters are in South San Francisco, California.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)