Lightning Network

Last updated

The Lightning Network (LN) is a payment protocol built on the bitcoin blockchain. [1] It is intended to enable fast transactions among participating nodes (independently run members of the network) and has been proposed as a solution to the bitcoin scalability problem. [2] [3] [4]

Contents

History

Joseph Poon and Thaddeus Dryja published a Lightning Network white paper in February 2015. [5] [6]

Lightning Labs launched the Lightning Network in 2018 with the goal of reducing the cost and time required for cryptocurrency transaction. Specifically, the bitcoin blockchain can only process around 7 transactions per second (compared to Visa Inc., which can process around 24,000 transactions per second). Despite initial enthusiasm for the Lightning Network, reports on social media of failed transactions, security vulnerabilities, and over-complication lead to a decline in interest. [7]

On January 19, 2019, pseudonymous Twitter user hodlonaut began a game-like promotional test of the Lightning Network by sending 100,000 satoshis (0.001 bitcoin) to a trusted recipient where each recipient added 10,000 satoshis ($0.34 at the time) to send to the next trusted recipient. The "lightning torch" payment reached notable personalities including former Twitter A.K.A X CEO Jack Dorsey, Litecoin Creator Charlie Lee, Lightning Labs CEO Elizabeth Stark, and Binance CEO "CZ" Changpeng Zhao, among others. [8] [9]

Design

Andreas Antonopoulos calls the Lightning Network a second layer routing network. [10] The payment channels allow participants to transfer money to each other without having to make all their transactions public on the blockchain. [11] [12] This is secured by penalizing uncooperative participants. When opening a channel, participants must commit an amount on the blockchain (a funding transaction). [13] Time-based script extensions like CheckSequenceVerify and CheckLockTimeVerify make the penalties possible.

Transacting parties use the Lightning Network by opening a payment channel and transferring (committing) funds to the relevant layer-1 blockchain (e.g. bitcoin) under a smart contract. The parties then make any number of off-chain Lightning Network transactions that update the tentative distribution of the channel's funds, without broadcasting to the blockchain. Whenever the parties have finished their transaction session, they close the payment channel, and the smart contract distributes the committed funds according to the transaction record. [6]

To initiate closing, one node first broadcasts the current state of the transaction record to the network, including a proposed settlement, a distribution of the committed funds. If both parties confirm the proposal, the funds are immediately paid on-chain. The other option is uncooperative closure, for example if one node has dropped from the network, or if it is broadcasting an incorrect (possibly fraudulent) transaction state. In this case settlement is delayed during a dispute period, when nodes may contest the proposal. If the second node broadcasts a more up-to-date timestamped distribution, including some transactions omitted by the first proposal, then all committed funds are transferred to the second node: this punitive breach remedy transaction thwarts attempts to defraud the other node by broadcasting out-of-date transactions.[ citation needed ]

Implementations

Benefits

According to bitcoin advocate Andreas Antonopoulos, the Lightning Network claims to provide several advantages over on-chain transactions:

Limitations

The Lightning Network is made up of bidirectional payment channels between two nodes which combined create smart contracts. If at any time either party drops the channel, the channel will close and be settled on the blockchain. [14] The on-chain transactions required to open and close lightning channels limit the scaleability of the lightning network. This can be mitigated if multiple users that trust each other share a lightning node. [15]

Lightning Network's dispute mechanism requires all users to watch the blockchain constantly for fraud. This vigilance can be outsourced to watchtower nodes, trusted providers who are paid to monitor for fraud. A period of 24 hours is allotted to create a bidirectional channel after receiving a request.[ citation needed ]

Routing

In the event that a bi-directional payment channel is no longer open between the transacting parties, the payment must be routed through network intermediaries via an onion routing technique similar to Tor. This requires that the sender and receiver of the payment have open channels with enough established peer nodes to find a path for the payment. [16]

Use cases

Laszlo Hanyecz, famous for paying 10,000 BTC for two pizzas in 2010, bought two more pizzas in 2018 via Lightning Network for 0.00649 BTC. [17]

Cash App implemented Lightning Network in 2022. [18]

Related Research Articles

<span class="mw-page-title-main">Bitcoin</span> Decentralized digital currency

Bitcoin is the first decentralized cryptocurrency. Based on a free-market ideology, bitcoin was invented in 2008 by Satoshi Nakamoto, an unknown person. Use of bitcoin as a currency began in 2009, with the release of its open-source implementation. In 2021, El Salvador adopted it as legal tender. It is mostly seen as an investment and has been described by some scholars as an economic bubble. As bitcoin is pseudonymous, its use by criminals has attracted the attention of regulators, leading to its ban by several countries as of 2021.

<span class="mw-page-title-main">Cryptocurrency</span> Digital currency not reliant on a central authority

A cryptocurrency, crypto-currency, or crypto is a digital currency designed to work through a computer network that is not reliant on any central authority, such as a government or bank, to uphold or maintain it.

<span class="mw-page-title-main">Bitcoin protocol</span> Rules that govern the functioning of Bitcoin

The bitcoin protocol is the set of rules that govern the functioning of bitcoin. Its key components and principles are: a peer-to-peer decentralized network with no central oversight; the blockchain technology, a public ledger that records all bitcoin transactions; mining and proof of work, the process to create new bitcoins and verify transactions; and cryptographic security.

<span class="mw-page-title-main">History of bitcoin</span> Cryptocurrency

Bitcoin is a cryptocurrency, a digital asset that uses cryptography to control its creation and management rather than relying on central authorities. Originally designed as a medium of exchange, Bitcoin is now primarily regarded as a store of value. The history of bitcoin started with its invention and implementation by Satoshi Nakamoto, who integrated many existing ideas from the cryptography community. Over the course of bitcoin's history, it has undergone rapid growth to become a significant store of value both on- and offline. From the mid-2010s, some businesses began accepting bitcoin in addition to traditional currencies.

<span class="mw-page-title-main">Ethereum</span> Open-source blockchain computing platform

Ethereum is a decentralized blockchain with smart contract functionality. Ether is the native cryptocurrency of the platform. Among cryptocurrencies, ether is second only to bitcoin in market capitalization. It is open-source software.

<span class="mw-page-title-main">Bitcoin Core</span> Bitcoin node and wallet software

Bitcoin Core is free and open-source software that serves as a bitcoin node and provides a bitcoin wallet which fully verifies payments. It is considered to be bitcoin's reference implementation. Initially, the software was published by Satoshi Nakamoto under the name "Bitcoin", and later renamed to "Bitcoin Core" to distinguish it from the network. It is also known as the Satoshi client. Bitcoin Core includes a transaction verification engine and connects to the bitcoin network as a full node.

A blockchain is a distributed ledger with growing lists of records (blocks) that are securely linked together via cryptographic hashes. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data. Since each block contains information about the previous block, they effectively form a chain, with each additional block linking to the ones before it. Consequently, blockchain transactions are irreversible in that, once they are recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

Monero is a cryptocurrency which uses a blockchain with privacy-enhancing technologies to obfuscate transactions to achieve anonymity and fungibility. Observers cannot decipher addresses trading Monero, transaction amounts, address balances, or transaction histories.

<span class="mw-page-title-main">Ethereum Classic</span> Blockchain computing platform

Ethereum Classic is a blockchain-based distributed computing platform that offers smart contract (scripting) functionality. It is open source and supports a modified version of Nakamoto consensus via transaction-based state transitions executed on a public Ethereum Virtual Machine (EVM).

<span class="mw-page-title-main">Cardano (blockchain platform)</span> Public blockchain platform

Cardano is a public blockchain platform. It is open-source and decentralized, with consensus achieved using proof of stake. It can facilitate peer-to-peer transactions with its internal cryptocurrency, ADA.

<span class="mw-page-title-main">Bitcoin scalability problem</span> Scaling problem in bitcoin processing

The Bitcoin scalability problem refers to the limited capability of the Bitcoin network to handle large amounts of transaction data on its platform in a short span of time. It is related to the fact that records in the Bitcoin blockchain are limited in size and frequency.

A cryptocurrency wallet is a device, physical medium, program or an online service which stores the public and/or private keys for cryptocurrency transactions. In addition to this basic function of storing the keys, a cryptocurrency wallet more often offers the functionality of encrypting and/or signing information. Signing can for example result in executing a smart contract, a cryptocurrency transaction, identification, or legally signing a 'document'.

In blockchain, a fork is defined variously as:

<span class="mw-page-title-main">IOTA (technology)</span> Open-source distributed ledger and cryptocurrency

IOTA is an open-source distributed ledger and cryptocurrency designed for the Internet of things (IoT). It uses a directed acyclic graph to store transactions on its ledger, motivated by a potentially higher scalability over blockchain based distributed ledgers. IOTA does not use miners to validate transactions, instead, nodes that issue a new transaction on the network must approve two previous transactions. Transactions can therefore be issued without fees, facilitating microtransactions. The network currently achieves consensus through a coordinator node, operated by the IOTA Foundation. As the coordinator is a single point of failure, the network is currently centralized.

In cryptocurrencies, an unspent transaction output (UTXO) is a distinctive element in a subset of digital currency models. A UTXO represents a certain amount of cryptocurrency that has been authorized by a sender and is available to be spent by a recipient. The utilization of UTXOs in transaction processes is a key feature of many cryptocurrencies, but it primarily characterizes those implementing the UTXO model.

A blockchain is a shared database that records transactions between two parties in an immutable ledger. Blockchain documents and confirms pseudonymous ownership of all transactions in a verifiable and sustainable way. After a transaction is validated and cryptographically verified by other participants or nodes in the network, it is made into a "block" on the blockchain. A block contains information about the time the transaction occurred, previous transactions, and details about the transaction. Once recorded as a block, transactions are ordered chronologically and cannot be altered. This technology rose to popularity after the creation of Bitcoin, the first application of blockchain technology, which has since catalyzed other cryptocurrencies and applications.

Nano is a cryptocurrency characterized by a directed acyclic graph data structure and distributed ledger, making it possible for Nano to work without intermediaries. To agree on what transactions to commit, it uses a voting system with weight based on the amount of currency an account holds.

Colored Coins is an open-source protocol that allows users to represent and manipulate immutable digital resources on top of Bitcoin transactions. They are a class of methods for representing and maintaining real-world assets on the Bitcoin blockchain, which may be used to establish asset ownership. Colored coins are bitcoins with a mark on them that specifies what they may be used for. Colored coins have also been considered a precursor to NFTs.

Nervos Network is a proof-of-work blockchain platform which consists of multiple blockchain layers that are designed for different functions. The native cryptocurrency of this layer is called CKB. Smart contracts and decentralized applications can be deployed on the Nervos blockchain. The Nervos Network was founded in 2018.

References

  1. "lightningnetwork/lnd". GitHub. Archived from the original on 2022-07-12. Retrieved 2021-05-04.
  2. Russo, Camila (March 15, 2018). "Technology Meant to Make Bitcoin Money Again Is Now Live". www.bloomberg.com. Archived from the original on 2018-03-31. Retrieved 2019-12-12.
  3. "MIT and Stanford Professors Are Designing a Cryptocurrency to Top Bitcoin: Unit-e". fortune.com. January 17, 2019. Archived from the original on 2021-10-06. Retrieved 2019-12-12.
  4. Popper, Nathaniel (August 15, 2017). "Bitcoin price surges after deal on software updates". The Boston Globe. Archived from the original on December 13, 2019. Retrieved December 12, 2019.
  5. "Lightning Network whitepaper 0.5 by Joseph Poon and Thaddeus Dryja". 28 February 2015. Archived from the original on 2015-02-28.
  6. 1 2 Lee, Timothy B. (2018-02-04). "Bitcoin has a huge scaling problem—Lightning could be the solution". Ars Technica. Archived from the original on 2021-09-01. Retrieved 2019-12-12.
  7. Xie, Teresa (16 October 2023). "Bitcoin's Lightning Network Scaling Solution Seeks Resurgence After Losing Way". Bloomberg. Archived from the original on 13 May 2024. Retrieved 13 May 2024 via Yahoo News.
  8. Browne, Ryan (6 February 2019). "Jack Dorsey says the 'only' cryptocurrency he owns is bitcoin". CNBC. Archived from the original on 15 August 2021. Retrieved 17 December 2019.
  9. Hackett, Robert; Roberts, Jeff John; Wieczner, Jen. "The Ledger: Cryptocurrency Custody, QuadrigaCX Quagmire, CEOs Pass Bitcoin 'Torch'". Fortune. Fortune Magazine. Archived from the original on 1 June 2022. Retrieved 17 December 2019.
  10. 1 2 3 4 5 Antonopoulos, Andreas (2017-07-21). Mastering Bitcoin (2nd ed.). O'Reilly. pp. 297–304. ISBN   978-1491954386.
  11. "The Lightning Network Could Make Bitcoin Faster—and Cheaper". Wired. ISSN   1059-1028. Archived from the original on 2021-11-25. Retrieved 2019-12-12.
  12. "MIT, Stanford Academics Design Cryptocurrency to Better Bitcoin". Bloomberg. Archived from the original on 2021-10-06. Retrieved 2019-12-12.
  13. Burchert, Conrad; Decker, Christian; Wattenhofer, Roger (August 29, 2018). "Scalable Funding of Bitcoin Micropayment Channel Networks" (PDF). Royal Society Open Science. 5 (8): 180089. Bibcode:2018RSOS....580089B. doi:10.1098/rsos.180089. PMC   6124062 . PMID   30225004. Archived from the original (PDF) on 28 June 2019. Retrieved 17 December 2019.
  14. Antonopoulos, Andreas; Osuntokun, Olaoluwa; Pickhardt, René (January 4, 2022). "How the Lightning Network Works". Mastering the Lightning Network: A Second Layer Blockchain Protocol for Instant Bitcoin Payments (1st ed.). O'Reilly Media. ISBN   978-1492054863. Archived from the original on July 1, 2022. Retrieved May 16, 2022.
  15. Sztorc, Paul (April 4, 2022). "Lightning Network -- Fundamental Limitations". Truthcoin. Archived from the original on 2024-01-17. Retrieved 2024-01-17.
  16. Antonopoulos, Andreas; Osuntokun, Olaoluwa; Pickhardt, René (January 4, 2022). "Chapter 8: Routing on a Network of Payment Channels". Mastering the Lightning Network: A Second Layer Blockchain Protocol for Instant Bitcoin Payments (1st ed.). O'Reilly Media. ISBN   978-1492054863. Archived from the original on June 4, 2022. Retrieved May 16, 2022.
  17. Russo, Camila (February 27, 2018). "Crypto Legend Who Bought Pizza With 10,000 Bitcoin Is Back At It". Bloomberg. Archived from the original on 2022-02-23. Retrieved 2019-12-12.
  18. Perez, Sarah (2022-01-18). "Block's Cash App adopts Lightning Network for free bitcoin payments". TechCrunch. Archived from the original on 2022-10-15. Retrieved 2022-10-15.