Graphical timeline of the Stelliferous Era

Last updated

This is the timeline of the Stelliferous era but also partly charts the Primordial era, and charts more of the Degenerate era of the heat death scenario.

Timeline

black dwarfFormation and evolution of the Solar System#Timeline of Solar System evolutionWhite dwarfred giantSunEarthPopulation I starsGalaxy formation and evolutionCosmic microwave background radiationMilky Way#AgeReionizationTimeline of the Big Bang#Dark AgesTimeline of the Big Bang#Structure formationGraphical timeline of the Big BangGraphical timeline from Big Bang to Heat DeathGraphical timeline of the universePhoton epochGraphical timeline of the Stelliferous Era

The scale is where is the time since the Big Bang expressed in years. For example, 10 billion years after the Big Bang (3.8 billion years ago) is .

See also

Related Research Articles

<span class="mw-page-title-main">Olbers's paradox</span> Argument in astrophysics against the theory of an unchanging universe

Olbers's paradox, also known as the dark night paradox, is an argument in astrophysics and physical cosmology that says that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. In the hypothetical case that the universe is static, homogeneous at a large scale, and populated by an infinite number of stars, any line of sight from Earth must end at the surface of a star and hence the night sky should be completely illuminated and very bright. This contradicts the observed darkness and non-uniformity of the night sky.

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

<span class="mw-page-title-main">Ultimate fate of the universe</span> Theories about the end of the universe

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

<span class="mw-page-title-main">Big Rip</span> Cosmological model

In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase. According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. However, this expansion is similar for every moment of time, and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time.

<span class="mw-page-title-main">Big Crunch</span> Theoretical scenario for the ultimate fate of the universe

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Freeze is more likely. However, some physicists have proposed that a "Big Crunch-style" event could result from a dark energy fluctuation.

<span class="mw-page-title-main">Heat death of the universe</span> Possible fate of the universe

The heat death of the universe is a hypothesis on the ultimate fate of the universe, which suggests the universe will evolve to a state of no thermodynamic free energy, and will therefore be unable to sustain processes that increase entropy. Heat death does not imply any particular absolute temperature; it only requires that temperature differences or other processes may no longer be exploited to perform work. In the language of physics, this is when the universe reaches thermodynamic equilibrium.

A logarithmic timeline is a timeline laid out according to a logarithmic scale. This necessarily implies a zero point and an infinity point, neither of which can be displayed. The most natural zero point is the Big Bang, looking forward, but the most common is the ever-changing present, looking backward.

<span class="mw-page-title-main">Cyclic model</span> Cosmological models involving indefinite, self-sustaining cycles

A cyclic model is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 theorized a universe following an eternal series of oscillations, each beginning with a Big Bang and ending with a Big Crunch; in the interim, the universe would expand for a period of time before the gravitational attraction of matter causes it to collapse back in and undergo a bounce.

<span class="mw-page-title-main">Horizon problem</span> Cosmological fine-tuning problem

The horizon problem is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956.

<span class="mw-page-title-main">Age of the universe</span> Time elapsed since the Big Bang

In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.

The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, this is a key parameter of the Friedmann equations.

A cosmological decade () is a division of the lifetime of the cosmos. The divisions are logarithmic in size, with base 10. Each successive cosmological decade represents a ten-fold increase in the total age of the universe.

The heat death paradox, also known as thermodynamic paradox, Clausius' paradox, and Kelvin's paradox, is a reductio ad absurdum argument that uses thermodynamics to show the impossibility of an infinitely old universe. It was formulated in February 1862 by Lord Kelvin and expanded upon by Hermann von Helmholtz and William John Macquorn Rankine.

This more-than-20-billion-year timeline of our universe shows the best estimates of major events from the universe's beginning to anticipated future events. Zero on the scale is the present day. A large step on the scale is one billion years; a small step, one hundred million years. The past is denoted by a minus sign: e.g., the oldest rock on Earth was formed about four billion years ago and this is marked at -4e+09 years, where 4e+09 represents 4 times 10 to the power of 9. The "Big Bang" event most likely happened 13.8 billion years ago; see age of the universe.

<span class="mw-page-title-main">Graphical timeline of the Big Bang</span> Logarithmic chronology of the event that began the Universe

This timeline of the Big Bang shows a sequence of events as currently theorized by scientists.

This timeline lists events in the external environment that have influenced events in human history. This timeline is for use with the article on environmental determinism. For the history of humanity's influence on the environment, and humanity's perspective on this influence, see timeline of history of environmentalism. See List of periods and events in climate history for a timeline list focused on climate.

<span class="mw-page-title-main">Expansion of the universe</span> Increase in distance between parts of the universe over time

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

This is the timeline of the Universe from Big Bang to Heat Death scenario. The different eras of the universe are shown. The heat death will occur in around 1.7×10106 years, if protons decay.

<span class="mw-page-title-main">Future of an expanding universe</span> Future scenario if the expansion of the universe will continue forever or not

Current observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".

<span class="mw-page-title-main">Chronology of the universe</span> History and future of the universe

The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.